Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments

In paper I [Phys. Fluids 13, 75 (2001)] we provided a theory for simulating anomalous dispersion which relied on the self-part of the intermediate scattering function. Here we obtain Lagrangian trajectories for a conservative tracer in a porous medium and then use these trajectories to obtain the self-part of the intermediate scattering function. We then use the scattering function as data for the inverse problem and obtain the generalized wave-vector and frequency dependent dispersion tensor developed in paper I. The transverse components of this tensor are then examined as a function of wave vector to see if or when the dispersive process goes asymptotic (Fickian). The matched index (of refraction) technique has been used to obtain a transparent porous medium and three dimensional particle tracking has been used to obtain the trajectories. Over the life of the experiment the transverse dispersive process remained anomalous, though it was gradually approaching the Fickian limit.

[1]  P. Viotti,et al.  Lagrangian Analysis of Nonreactive Pollutant Dispersion in Porous Media by Means of the Particle Image Velocimetry Technique , 1996 .

[2]  Timothy R. Ginn,et al.  Nonequilibrium statistical mechanics of preasymptotic dispersion , 1994 .

[3]  J. Thovert,et al.  Flow along porous media by partical image velocimetry , 1993 .

[4]  L. E. Scriven,et al.  NMR imaging of velocity profiles and velocity distributions in bead packs , 1996 .

[5]  J. K. Jasti,et al.  Application of neutron radiography to image flow phenomena in porous media , 1992 .

[6]  Russ E. Davis,et al.  LAGRANGIAN OCEAN STUDIES , 1991 .

[7]  Sadik Kakaç,et al.  Convective heat and mass transfer in porous media , 1991 .

[8]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[9]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[10]  Mehdi Rashidi,et al.  Experimental analysis of pore-scale flow and transport in porous media , 1996 .

[11]  Robert S. Bernard,et al.  Simulation of flow through bead packs using the lattice Boltzmann method , 1998 .

[12]  J. Leblond,et al.  Experimental measurement of dispersion processes at short times using a pulsed field gradient NMR technique , 1997 .

[13]  Antonio Cenedese,et al.  A laboratory model of turbulent convection in the atmospheric boundary layer , 1994 .

[14]  A. Vulpiani,et al.  Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient , 1997, chao-dyn/9701013.

[15]  Timothy R. Ginn,et al.  Nonlocal dispersion in media with continuously evolving scales of heterogeneity , 1993 .

[16]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[18]  Pierre M. Adler,et al.  Measurement of two-dimensional velocity fields in porous media by particle image displacement velocimetry , 1992 .

[19]  S. Gibbs,et al.  Mapping flow and dispersion in a packed column by MRI , 1999 .

[20]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[21]  U. Pietrzyk,et al.  Flow visualization in porous media via Positron Emission Tomography , 1998 .

[22]  George F. Pinder,et al.  Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry , 1993 .

[23]  John H. Cushman,et al.  Dynamics of fluids in hierarchical porous media , 1990 .

[24]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[25]  Clive A. Greated,et al.  Stereoscopic particle image velocimetry , 1991 .

[26]  Examination of transport theory of arbitrary order in velocity variance by MRI , 1999 .

[27]  A. Compte,et al.  Generalized Diffusion−Advection Schemes and Dispersive Sedimentation: A Fractional Approach† , 2000 .

[28]  A. T. Watson,et al.  NMR imaging of flow velocity in porous media , 1999 .

[29]  L. Gladden,et al.  Correlations between dispersion and structure in porous media probed by nuclear magnetic resonance , 1999 .

[30]  G. Campbell,et al.  The numerical solution of nonlinear Volterra integral equations , 1970 .

[31]  Ken Iguchi A starting method for solving nonlinear Volterra integral equations of the second kind , 1972, CACM.

[32]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[33]  Thomas J. Kulp,et al.  Measurement of porous medium velocity fields and their volumetric averaging characteristics using particle tracking velocimetry , 1995 .

[34]  Nicos Martys,et al.  Pulsed gradient NMR measurements and numerical simulation of flow velocity distribution in sphere packings , 1996 .

[35]  G. Guillot,et al.  Monitoring of tracer dispersion in porous media by NMR imaging , 1991 .

[36]  G. Dagan Flow and transport in porous formations , 1989 .

[37]  John F. Brady,et al.  Anomalous diffusion in heterogeneous porous media , 1988 .

[38]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[39]  Brian Berkowitz,et al.  Theory of anomalous chemical transport in random fracture networks , 1998 .

[40]  M. Crawford,et al.  Magnetohydrodynamic Flows in Porous Media II: Experimental Results , 1998 .

[41]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[42]  W. B. Lindquist,et al.  A theory of macrodispersion for the scale-up problem , 1993 .

[43]  Yann Guezennec,et al.  Algorithms for fully automated three-dimensional particle tracking velocimetry , 1994 .