Thermodynamic resource theories, non-commutativity and maximum entropy principles

We discuss some features of thermodynamics in the presence of multiple conserved quantities. We prove a generalisation of Landauer principle illustrating tradeoffs between the erasure costs paid in different 'currencies'. We then show how the maximum entropy and complete passivity approaches give different answers in the presence of multiple observables. We discuss how this seems to prevent current resource theories from fully capturing thermodynamic aspects of non-commutativity.

[1]  Stephen M. Barnett,et al.  Beyond Landauer Erasure , 2013, Entropy.

[2]  Stephen M. Barnett,et al.  Information erasure without an energy cost , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[4]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[5]  David Jennings,et al.  The extraction of work from quantum coherence , 2015, 1506.07875.

[6]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[7]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[8]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[9]  S. Weis,et al.  Entropy distance: New quantum phenomena , 2010, 1007.5464.

[10]  Paul Skrzypczyk,et al.  Passivity, complete passivity, and virtual temperatures. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  T. Rudolph,et al.  Reexamination of pure qubit work extraction. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[13]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[14]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[15]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[16]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[17]  Paul Skrzypczyk,et al.  Extracting work from correlations , 2014, 1407.7765.

[18]  F. A. Wolf,et al.  Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems , 2011, 1102.2117.

[19]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[20]  R. Uzdin Coherence-Induced Reversibility and Collective Operation of Quantum Heat Machines via Coherence Recycling , 2016 .

[21]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[22]  R. Balian,et al.  Equiprobability, inference, and entropy in quantum theory , 1987 .

[23]  Michael M. Wolf,et al.  An improved Landauer principle with finite-size corrections , 2013, 1306.4352.

[24]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[25]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[26]  A. Winter,et al.  Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges , 2015, Nature Communications.

[27]  Communications in Mathematics , 2014 .

[28]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[29]  J. Eisert,et al.  Work and entropy production in generalised Gibbs ensembles , 2015, 1512.03823.

[30]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[31]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[32]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[33]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[34]  A. Lenard Thermodynamical proof of the Gibbs formula for elementary quantum systems , 1978 .

[35]  A. J. Short,et al.  Thermodynamics of quantum systems with multiple conserved quantities , 2015, Nature Communications.