Nanoscale precipitation patterns in carbon–nickel nanocomposite thin films: Period and tilt control via ion energy and deposition angle

Periodic precipitation patterns in C:Ni nanocomposites grown by energetic ion codeposition are investigated. Films were grown at room temperature by ionized physical vapor deposition using a pulsed ...

[1]  D. Kessler,et al.  Phase separation during film growth , 1992 .

[2]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[3]  Formation of Liesegang patterns: A spinodal decomposition scenario , 1999, cond-mat/9903420.

[4]  J H He,et al.  Bombardment-induced tunable superlattices in the growth of Au-Ni films. , 2006, Physical review letters.

[5]  Hans Hofsäss,et al.  Self-organized nanoscale multilayer growth in hyperthermal ion deposition , 2004 .

[6]  Chopard,et al.  Reaction-diffusion cellular automata model for the formation of Leisegang patterns. , 1994, Physical review letters.

[7]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[8]  M. J. Brett,et al.  Chiral sculptured thin films , 1996, Nature.

[9]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[10]  André Anders,et al.  Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field , 2002 .

[11]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[12]  M. Fiałkowski,et al.  Wet stamping of microscale periodic precipitation patterns. , 2005, The journal of physical chemistry. B.

[13]  E. Oks,et al.  Elevated ion charge states in vacuum arc plasmas in a magnetic field , 1995 .

[14]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[15]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[16]  Bartosz A. Grzybowski,et al.  Micro- and nanotechnology via reaction–diffusion , 2005 .

[17]  Michael J. Brett,et al.  Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films , 2007 .

[18]  A. Anders Cathodic Arcs: From Fractal Spots to Energetic Condensation , 2008 .

[19]  Jyh-Ming Ting,et al.  Self-assembled alternating nano-scaled layers of carbon and metal , 2004 .

[20]  Ian G. Brown,et al.  Some observations of the effect of magnetic field and arc current on the vacuum arc ion charge state distribution , 1995 .

[21]  Matthias Krause,et al.  Phase separation in carbon-nickel films during hyperthermal ion deposition , 2009 .

[22]  Enric Bertran,et al.  Spontaneous formation of nanometric multilayers of metal-carbon films by up-hill diffusion during growth , 2005 .

[23]  G. Radnóczi,et al.  Growth regimes and metal enhanced 6-fold ring clustering of carbon in carbon-nickel composite thin films , 2007 .

[24]  E. Oks,et al.  Ion charge state distributions in high current vacuum arc plasmas in a magnetic field , 1996 .

[25]  M. Ohring The Materials Science of Thin Films , 1991 .

[26]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[27]  André Anders,et al.  Metal plasmas for the fabrication of nanostructures , 2007 .

[28]  H. Hillhouse,et al.  Materials: Spontaneous formation of inorganic helices , 2000, Nature.

[29]  E. Oks,et al.  Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields , 1998 .

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  Daniel Andruczyk,et al.  Langmuir probe study of a titanium pulsed filtered cathodic arc discharge , 2006 .

[32]  R. Lazzari X-Ray and Neutron Reflectivity : Principles and Applications , 2009 .

[33]  M. Strobel,et al.  Interfaces under ion irradiation: growth and taming of nanostructures , 2003 .

[34]  J. Urry Complexity , 2006, Interpreting Art.

[35]  K. Stern,et al.  Liesegang Phenomenon. , 1954, Science.

[36]  Milos Dolnik,et al.  Oscillatory cluster patterns in a homogeneous chemical system with global feedback , 2000, Nature.

[37]  J. Kirkaldy Spontaneous evolution of spatiotemporal patterns in materials , 1992 .

[38]  Andreas C Scheinost,et al.  X-ray Spectroscopic and Magnetic Investigation of C:Ni Nanocomposite Films Grown by Ion Beam Cosputtering , 2008 .

[39]  U. Helmersson,et al.  Ionized physical vapor deposition (IPVD): A review of technology and applications , 2006 .

[40]  T. Antal,et al.  Guiding fields for phase separation: controlling Liesegang patterns. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A simple model for low energy ion-solid interactions , 1997 .

[42]  M. Nastasi,et al.  Ion-Solid Interactions: Fundamentals and Applications , 1996 .

[43]  C. D. Adams,et al.  Monte Carlo simulation of phase separation during thin‐film codeposition , 1993 .

[44]  R. Lazzari Grazing Incidence Small-Angle X-Ray Scattering from Nanostructures , 2009 .

[45]  J. H. He,et al.  Correlation between formation of layered nanoparticles in phase separated films and ion beam assisted deposition , 2007 .

[46]  Koichi Tanji,et al.  Well-Aligned Nanocylinder Formation in Phase-Separated Metal-Silicide–Silicon and Metal-Germanide–Germanium Systems , 2007 .

[47]  F. Léonard,et al.  Molecular beam epitaxy in the presence of phase separation , 1997 .

[48]  G. B. Warr,et al.  Tomographic interferometry of a filtered high-current vacuum arc plasma , 2007 .

[49]  M. Droz,et al.  Designed patterns: flexible control of precipitation through electric currents. , 2008, Physical review letters.