Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses

Abstract The interactions between plants of different species, age or size play an important role in the dynamics of an ecosystem and can induce specific structures. These interactions can be studied by analysing the spatial structure of the corresponding bivariate patterns. The intertype L12-function has recently been successfully used in many papers for that purpose. However, when interpreting the results obtained with ecological data, at least two different null hypotheses – independence or random labelling – can be appropriate, depending on the context of the study and the nature of the data. As these two hypotheses correspond to different confidence intervals, an inappropriate choice of the null hypothesis can lead to misinterpretations of biotic interactions when studying ecological data. This problem has rarely been mentioned in the literature. In this paper we clarify the differences between these two null hypotheses, and illustrate the risk of misinterpretation when using an inappropriate null hypothesis. We review the main characteristics of these two hypotheses, and analyse the spatial structure of both real data from forest stands and simulated virtual stands of different structures. We demonstrate that the risk of misinterpretation is quite high, and that extreme misinterpretations, i.e. cases leading to opposite conclusions in terms of spatial interaction, can occur in a significant number of cases. We therefore propose some guidelines to help ecologists avoid such misinterpretations. Nomenclature: Boggan et al. (1997); Rameau et al. (1989). Abbreviation: CSR = Complete spatial randomness.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  Melinda Moeur,et al.  Characterizing Spatial Patterns of Trees Using Stem-Mapped Data , 1993, Forest Science.

[3]  Jerzy Szwagrzyk,et al.  Spatial patterns of trees in natural forests of East‐Central Europe , 1993 .

[4]  Richard P. Duncan,et al.  COMPETITION AND THE COEXISTENCE OF SPECIES IN A MIXED PODOCARP STAND , 1991 .

[5]  V. Funk,et al.  Checklist of the plants of the Guianas (Guyana, Surinam, French Guiana) , 1997 .

[6]  Scott N. Martens,et al.  Scales of aboveground and below‐ground competition in a semi‐arid woodland detected from spatial pattern , 1997 .

[7]  Noel A Cressie,et al.  A space-time survival point process for a longleaf pine forest in Southern Georgia , 1994 .

[8]  Eric Renshaw,et al.  The exploratory analysis of bivariate spatial point patterns using cross-spectra , 1996 .

[9]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[10]  Raphaël Pélissier,et al.  Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest , 1998 .

[11]  A. Brix,et al.  Testing Local Independence between Two Point Processes , 2001, Biometrics.

[12]  Sébastien Barot,et al.  DEMOGRAPHY OF A SAVANNA PALM TREE: PREDICTIONS FROM COMPREHENSIVE SPATIAL PATTERN ANALYSES , 1999 .

[13]  Bivariate pattern analysis of jack pine - trembling aspen interaction , 1994 .

[14]  Michel Loreau,et al.  Spatial structure and the survival of an inferior competitor: a theoretical model of neighbourhood competition in plants , 2002 .

[15]  Geoffrey M. Henebry,et al.  Inferring Process from Pattern in Natural CommunitiesCan we understand what we see , 1989 .

[16]  van Marie-Colette Lieshout,et al.  Indices of Dependence Between Types in Multivariate Point Patterns , 1999 .

[17]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[18]  Raphaël Pélissier,et al.  A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation , 2001 .

[19]  François Goreaud,et al.  Apports de l'analyse de la structure spatiale en forêt tempérée à l'étude et la modélisation des peuplements complexes , 2000 .

[20]  N. C. Kenkel,et al.  Pattern of Self‐Thinning in Jack Pine: Testing the Random Mortality Hypothesis , 1988 .

[21]  B. Ripley Modelling Spatial Patterns , 1977 .

[22]  P. Forget,et al.  Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana , 1999, Journal of Tropical Ecology.

[23]  Peter Haase,et al.  Can isotropy vs. anisotropy in the spatial association of plant species reveal physical vs. biotic facilitation , 2001 .

[24]  Jiquan Chen,et al.  Forest structure in space: a case study of an old growth spruce-fir forest in Changbaishan Natural Reserve, PR China , 1999 .

[25]  Stand dynamics of Dacrydium cupressinum dominated forest on glacial terraces, south Westland, New Zealand , 1999 .

[26]  Jean Thioulouse,et al.  ADE-4: a multivariate analysis and graphical display software , 1997, Stat. Comput..

[27]  Bernard W. Silverman,et al.  Methods for Analysing Spatial Processes of Several Types of Points , 1982 .

[28]  P. Couteron,et al.  Woody vegetation spatial patterns in a semi-arid savanna of Burkina Faso, West Africa , 1997, Plant Ecology.

[29]  Raphaël Pélissier,et al.  On explicit formulas of edge effect correction for Ripley's K‐function , 1999 .

[30]  Erkki Tomppo,et al.  Models and methods for analysing spatial patterns of trees. , 1986 .

[31]  Dietrich Stoyan,et al.  Marked Point Processes in Forest Statistics , 1992, Forest Science.

[32]  N. Kenkel,et al.  A long‐term study of Pinus banksiana population dynamics , 1997 .

[33]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[34]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[35]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[36]  G. Espa,et al.  Study of archaeological areas by means of advanced software technology and statistical methods , 2000 .

[37]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[38]  Frédérique Collinet Essai de regroupements des principales espèces structurantes d'une forêt dense humide d'après l'analyse de leur répartition spatiale (forêt de Paracou - Guyane) , 1997 .

[39]  J. Szwagrzyk Small-scale spatial patterns of trees in a mixed Pinus sylvestris-Fagus sylvatica forest , 1992 .

[40]  Jorge Mateu,et al.  Second-order characteristics of spatial marked processes with applications , 2000 .