Low-loss arrayed waveguide grating at 760 nm.

An arrayed waveguide grating (AWG) at 760 nm is demonstrated with an insertion loss smaller than 0.5 dB. Interface roughness and waveguide length errors contribute much more to scattering loss and phase errors at 760 nm than at longer wavelengths, thus requiring improved design and fabrication. This Letter details how this is achieved by minimizing interfacial scattering, grating side-order excitation, and phase errors in the AWG. With silicon nitride core and silicon dioxide clad waveguides on silicon, this AWG is compatible with heterogeneously integrated lasers for on-chip spectral beam combining.

[1]  Wei Chen,et al.  The role of photomask resolution on the performance of arrayed-waveguide grating devices , 2001 .

[2]  T. Barwicz,et al.  Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides , 2005, Journal of Lightwave Technology.

[3]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[4]  James K. Hsiao Normalized relationship among errors and sidelobe levels , 1984 .

[5]  J. R. Adleman,et al.  Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides , 2014 .

[6]  K. Okamoto,et al.  Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides , 2000, IEEE Photonics Technology Letters.

[7]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[8]  Marc Sorel,et al.  Integrated microspectrometer for fluorescence based analysis in a microfluidic format. , 2012, Lab on a chip.

[9]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Yuki Komai,et al.  Compact Spectroscopic Sensor Using a Visible Arrayed Waveguide Grating , 2006 .

[11]  G. Przyrembel,et al.  Small-size silicon-oxynitride AWG demultiplexer operating around 725 nm , 2000, IEEE Photonics Technology Letters.

[12]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[13]  J. Bowers,et al.  Heterogeneous lasers and coupling to Si₃N₄ near 1060 nm. , 2014, Optics letters.

[14]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[15]  Wim Bogaerts,et al.  Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. , 2013, Optics letters.

[16]  Zach DeVito,et al.  Opt , 2017 .

[17]  Alexander Spott,et al.  Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. , 2015, Optics express.

[18]  J. Bowers,et al.  Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. , 2011, Optics express.

[19]  Vittorio M. N. Passaro,et al.  Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides , 2009 .

[20]  Wim Bogaerts,et al.  Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths , 2015, IEEE Photonics Technology Letters.

[21]  Wim Bogaerts,et al.  Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings , 2014, IEEE Photonics Technology Letters.

[22]  Akio Sugita,et al.  Estimation of waveguide phase error in silica-based waveguides , 1997 .