Recent Progress ofThermal Interface Materials

This paper reviews the status and recent progress achieved in the research of thermal interface materials (TIMs). The focus is on the research work performed in academia. The research and development work carried out in industry is also generally introduced. The existing TIM technologies have been categorized into eight main types and comprehensively analyzed. The state-of-the-art­ research is then summarized and discussed with an emphasis on the carbon-filled materials. Other aspects of the TIM-related research, including theoretical study, modeling work, and characterization etc., are also briefly covered.

[1]  Jun Xu,et al.  Thermal characterization of vertically-oriented carbon nanotubes on silicon , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[2]  S. Fan,et al.  The Carbon Nanotube Based Nanocomposite with Enhanced Thermal Conductivity , 2007 .

[3]  K. Goodson,et al.  Infrared Microscopy Thermal Characterization of Opposing Carbon Nanotube Arrays , 2007 .

[4]  A Numerical Study of Transport in a Thermal Interface Material Enhanced With Carbon Nanotubes , 2006 .

[5]  Masayoshi Ohashi,et al.  Spherical Aluminum Nitride Fillers for Heat‐Conducting Plastic Packages , 2005 .

[6]  Xianfan Xu,et al.  Increased real contact in thermal interfaces: A carbon nanotube/foil material , 2007 .

[7]  Eric Samson,et al.  Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel Centrino Mobile Technology , 2005 .

[8]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[9]  Shoushan Fan,et al.  Thermal conductivity improvement of silicone elastomer with carbon nanotube loading , 2004 .

[10]  H. Hahn,et al.  Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites , 2006 .

[11]  K. Zhang,et al.  Thermal interface material with aligned CNT and its application in HB-LED packaging , 2006, 56th Electronic Components and Technology Conference 2006.

[12]  P. Conway,et al.  Thermal Interface Materials - A Review of the State of the Art , 2006, 2006 1st Electronic Systemintegration Technology Conference.

[13]  C.J.M. Lasance,et al.  Challenges in thermal interface material testing , 2006, Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium.

[14]  Xuehong Lu,et al.  Thermal conductivity of boron nitride‐filled thermoplastics: Effect of filler characteristics and composite processing conditions , 2005 .

[15]  Bodo Fiedler,et al.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites , 2006 .

[16]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[17]  Jin Yu,et al.  Comparative study of thermally conductive fillers in underfill for the electronic components , 2005 .

[18]  B. Garnier,et al.  Thermal properties and percolation in carbon nanotube-polymer composites , 2007 .

[19]  Kuo-Chan Chiou,et al.  High Thermal Efficiency Carbon Nanotube-Resin Matrix for Thermal Interface Materials , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[20]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[21]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[22]  A Statistical Analysis of Thermal Interface Materials Enhanced by Vertically Aligned Carbon Nanotubes , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[23]  Jae Ryoun Youn,et al.  Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method , 2006 .

[24]  K. Siow,et al.  Analysis of Phase Change Material for Use as Thermal Interface Material , 2004 .

[25]  K. Lafdi,et al.  The effect of a CNT interface on the thermal resistance of contacting surfaces , 2007 .

[26]  Alan H. Windle,et al.  Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites , 2006 .

[27]  Clemens J. M. Lasance,et al.  The urgent need for widely-accepted test methods for thermal interface materials , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[28]  T. Masuko,et al.  Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites , 1998 .

[29]  F. Pompeo,et al.  Phase change materials as a viable thermal interface material for high-power electronic applications , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[30]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[31]  J. Qu,et al.  Electrical and Thermal Conductivities of Polymer Composites Containing Nano-Sized Particles , 2004, ECTC 2004.

[32]  P. Supancic,et al.  Thermal Conductivity of Platelet‐Filled Polymer Composites , 2004 .

[33]  E. Bekyarova,et al.  Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites , 2006 .

[34]  H. Garmestani,et al.  Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing , 2003 .

[35]  Changhong Liu,et al.  Aligned Carbon Nanotube Composite Films for Thermal Management , 2005 .

[36]  Jun Xu,et al.  Photoacoustic characterization of carbon nanotube array thermal interfaces , 2007 .

[37]  Jun Xu,et al.  Thermal Contact Conductance Enhancement With Carbon Nanotube Arrays , 2004 .

[38]  Jun Xu,et al.  Enhancement of thermal interface materials with carbon nanotube arrays , 2006 .

[39]  Yulong Ding,et al.  Effective thermal and electrical conductivity of carbon nanotube composites , 2007 .

[40]  E. Pop,et al.  Thermal Properties of Metal-Coated Vertically-Aligned Single Wall Nanotube Films , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[41]  J. Norley,et al.  Thermal joint conductance for flexible graphite materials: analytical and experimental study , 2005, IEEE Transactions on Components and Packaging Technologies.

[42]  K. Srihari,et al.  Voids in thermal interface material layers and their effect on thermal performance , 2004, Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971).

[43]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[44]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[45]  M. Zhang,et al.  Carbon Nanotube/Copper Composites for Via Filling and Thermal Management , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[46]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[47]  Kai Zhang,et al.  Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[48]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[49]  Jean C. Huie,et al.  Thermal conductivity of an aligned carbon nanotube array , 2007 .

[50]  Shuhua Qi,et al.  Thermally conductive silicone rubber reinforced with boron nitride particle , 2007 .

[51]  Takashi Kashiwagi,et al.  An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity , 2006 .

[52]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[53]  D. Krassowski,et al.  Advanced Thermal Interface Materials Using Natural Graphite , 2003 .

[54]  D. Chung,et al.  Thermally conducting aluminum nitride polymer-matrix composites , 2001 .

[55]  P. Ajayan,et al.  Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. , 2007, Journal of nanoscience and nanotechnology.

[56]  Quanshui Zheng,et al.  Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites , 2007 .

[57]  Fay Hua,et al.  The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging , 2006 .

[58]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[59]  Teng Wang,et al.  Nanostructured polymer-metal composite for thermal interface material applications , 2008, 2008 58th Electronic Components and Technology Conference.

[60]  P. Chan,et al.  Flexible transfer of aligned carbon nanotube films for integration at lower temperature , 2007 .

[61]  P. Chan,et al.  Low Temperature Transfer of Aligned Carbon Nanotube Films Using Liftoff Technique , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[62]  An analytical study of transport in a thermal interface material enhanced with carbon nanotubes , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[63]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[64]  Mica Grujicic,et al.  The effect of thermal contact resistance on heat management in the electronic packaging , 2005 .

[65]  Xianfan Xu,et al.  Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance , 2007 .

[66]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[67]  Kai Zhang,et al.  Thermal Performance of Carbon Nanotube-Based Composites Investigated by Molecular Dynamics Simulation , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[68]  K. Srihari,et al.  Effects of assembly process variables on voiding at a thermal interface , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[69]  K. Paik,et al.  Anisotropic conductive adhesives with enhanced thermal conductivity for flip chip applications , 2004, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546).

[70]  M. Yuen,et al.  Investigation of Carbon Nanotube Performance under External Mechanical Stresses and Moisture , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[71]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[72]  Hui‐Ming Cheng,et al.  Thermal transport enhancement of multi-walled carbon nanotubes/ high-density polyethylene composites , 2006 .

[73]  R. Dietz,et al.  Measurements of adhesive bondline effective thermal conductivity and thermal resistance using the laser flash method , 1999, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306).