Exploring the capabilities of Digital Holography as tool for testing optical microstructures

AbstractA demonstration of the capabilities of Digital Holography (DH) in microscope configuration is presented for inspecting and qualifying optical microstructures. Different structures with dimensions ranging from hundreds to few tens of microns are investigated, analyzed and characterized by DH showing that the technique is suitable either for liquid as well as polymeric microlenses. Thanks to the numerical reconstruction of the complex wavefields, we show that DH is able to retrieve not only the morphology of each single structure element but also to furnish accurate information on all the changes (spontaneous or induced) occurring during the inspection time, such as the curvature variation of liquid microlenses or the wavefront distortion.

[1]  Bin Wang,et al.  Thermally tunable polymer microlenses , 2008 .

[2]  W. Hsieh,et al.  Lens-profile control by electrowetting fabrication technique , 2005, IEEE Photonics Technology Letters.

[3]  Pietro Ferraro,et al.  Surface-charge lithography for direct PDMS micro-patterning. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[5]  Pietro Ferraro,et al.  Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. , 2008, Optics express.

[6]  J. Yeh,et al.  Dielectrically actuated liquid lens. , 2007, Optics express.

[7]  Ki-Hun Jeong,et al.  Tunable microdoublet lens array , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[8]  G. Coppola,et al.  A digital holographic microscope for complete characterization of microelectromechanical systems , 2004 .

[9]  E. Cuche,et al.  Characterization of microlenses by digital holographic microscopy. , 2006, Applied optics.

[10]  Hong Hocheng,et al.  Innovative rapid replication of microlens arrays using electromagnetic force-assisted UV imprinting , 2009 .

[11]  Peter Malcolm Moran,et al.  Fluidic lenses with variable focal length , 2006 .

[12]  Pietro Ferraro,et al.  Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets , 2008 .

[13]  Melania Paturzo,et al.  Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. , 2009, Optics Letters.

[14]  Shin-Tson Wu,et al.  Tunable-focus liquid microlens array using dielectrophoretic effect. , 2008, Optics express.

[15]  J. Yeh,et al.  Variable focus dielectric liquid droplet lens. , 2006, Optics express.

[16]  A. Asundi,et al.  Studies of digital microscopic holography with applications to microstructure testing. , 2001, Applied optics.

[17]  Alfred J. Crosby,et al.  Fabricating Microlens Arrays by Surface Wrinkling , 2006 .

[18]  W. Osten,et al.  The determination of material parameters of microcomponents using digital holography , 2001 .

[19]  Melania Paturzo,et al.  In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy , 2008 .

[20]  Pietro Ferraro,et al.  Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method , 2004 .

[21]  Pietro Ferraro,et al.  Surface topography of microstructures in lithium niobate by digital holographic microscopy , 2004 .

[22]  Teng-Kai Shin,et al.  A new approach to polymeric microlens array fabrication using soft replica molding , 2004, IEEE Photonics Technology Letters.

[23]  P. Ferraro,et al.  Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram , 2007 .

[24]  Chih-Yuan Chang,et al.  A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold , 2006 .

[25]  Melania Paturzo,et al.  Light induced patterning of poly(dimethylsiloxane) microstructures. , 2010, Optics express.

[26]  Francesco Merola,et al.  Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography , 2009 .

[28]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[29]  P. Ferraro,et al.  Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. , 2009, Optics express.

[30]  W. Fang,et al.  Thermal Actuated Solid Tunable Lens , 2006, IEEE Photonics Technology Letters.

[31]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[32]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[33]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[34]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[35]  Po-Hsun Huang,et al.  Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing. , 2008, Optics express.

[36]  D. Luo,et al.  A negative-positive tunable liquid-crystal microlens array by printing. , 2009, Optics express.

[37]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[38]  Francesco Merola,et al.  Full characterization of the photorefractive bright soliton formation process using a digital holographic technique , 2009 .

[39]  Hans Zappe,et al.  A MEMS-based variable micro-lens system , 2006 .

[40]  Domenico Alfieri,et al.  Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. , 2004, Optics letters.

[41]  A Finizio,et al.  Whole optical wavefields reconstruction by digital holography. , 2001, Optics express.

[42]  Pietro Ferraro,et al.  Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time. , 2003, Optics letters.

[43]  Tsung-Hung Lin,et al.  Concave microlens array mold fabrication in photoresist using UV proximity printing , 2007, ArXiv.