Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories

[1]  M. Sobhy A comprehensive study on FGM nanoplates embedded in an elastic medium , 2015 .

[2]  F. Ebrahimi,et al.  Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method , 2015 .

[3]  Mohammad Rahim Nami,et al.  Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory , 2015 .

[4]  N. Wattanasakulpong,et al.  Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities , 2014 .

[5]  Huu-Tai Thai,et al.  Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates , 2013 .

[6]  M. Sobhy,et al.  Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium , 2013 .

[7]  A. Alibeigloo,et al.  Static analysis of rectangular nano-plate using three-dimensional theory of elasticity , 2013 .

[8]  M. Sobhy Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions , 2013 .

[9]  I. Mechab,et al.  Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function , 2013 .

[10]  K. Magnucki,et al.  Stability of a porous-cellular cylindrical shell subjected to combined loads , 2013 .

[11]  Huu-Tai Thai,et al.  Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory , 2012 .

[12]  S. Narendar,et al.  Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics , 2012 .

[13]  D. Kelly,et al.  Free vibration analysis of layered functionally graded beams with experimental validation , 2012 .

[14]  S. Narendar,et al.  Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory , 2012 .

[15]  N. E. Meiche,et al.  A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate , 2011 .

[16]  I. Mechab,et al.  A two variable refined plate theory for the bending analysis of functionally graded plates , 2010 .

[17]  Huu-Tai Thai,et al.  Free vibration of laminated composite plates using two variable refined plate theory , 2010 .

[18]  E. Magnucka-Blandzi Non-linear analysis of dynamic stability of metal foam circular plate , 2010 .

[19]  J. N. Reddy,et al.  Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates , 2009 .

[20]  Huu-Tai Thai,et al.  A two variable refined plate theory for laminated composite plates , 2009 .

[21]  Huu-Tai Thai,et al.  BUCKLING ANALYSIS OF PLATES USING THE TWO VARIABLE REFINED PLATE THEORY , 2009 .

[22]  E. Magnucka-Blandzi Dynamic stability of a metal foam circular plate , 2009 .

[23]  E. Magnucka-Blandzi Axi-symmetrical deflection and buckling of circular porous-cellular plate , 2008 .

[24]  J. N. Reddy,et al.  Non-local elastic plate theories , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  K. Magnucki,et al.  Dynamic stability of a porous cylindrical shell , 2006 .

[26]  Hassan Haddadpour,et al.  An analytical solution for nonlinear cylindrical bending of functionally graded plates , 2006 .

[27]  R. Shimpi,et al.  A two variable refined plate theory for orthotropic plate analysis , 2006 .

[28]  H. G. Patel,et al.  FREE VIBRATIONS OF PLATE USING TWO VARIABLE REFINED PLATE THEORY , 2006 .

[29]  Ashraf M. Zenkour,et al.  Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading , 2004 .

[30]  Jie Yang,et al.  Bending and vibration characteristics of a strengthened plate under various boundary conditions , 2003 .

[31]  R. Shimpi,et al.  REFINED PLATE THEORY AND ITS VARIANTS , 2002 .

[32]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[33]  M. Koizumi THE CONCEPT OF FGM , 1993 .

[34]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[35]  W. R. Burke,et al.  Space Applications of Advanced Structural Materials , 1990 .

[36]  Tarun Kant,et al.  A Simple Finite Element Formulation of a Higher-order Theory for Unsymmetrically Laminated Composite Plates , 1988 .

[37]  J. Ren,et al.  A new theory of laminated plate , 1986 .

[38]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[39]  L. K. Stevens,et al.  A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .

[40]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[41]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[42]  Liviu Librescu,et al.  On the theory of anisotropic elastic shells and plates , 1967 .

[43]  P. L. Pasternak On a new method of analysis of an elastic foundation by means of two foundation constants , 1954 .

[44]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[45]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .