Assessing track geometry quality based on wavelength spectra and track–vehicle dynamic interaction

This paper presents a study of assessing track geometry quality (longitudinal level and alignment) by the use of dynamic track–vehicle simulations and wavelength spectra analysis. Two simulation models are developed: one is based on the software package GENSYS, which provides realistic simulations of the nonlinear dynamic behaviour of a vehicle running on real track, and the other one is based on a newly developed linear track–vehicle model, which is suitable for effectively calculating wheel–rail forces for very long track sections. The linear model, first proposed in 1 2 to assess vertical track geometry quality (longitudinal level), is extended in the present paper to simulate lateral track–vehicle dynamic interaction and, thus, to assess lateral track geometry quality (alignment) as well. Numerical results are presented to compare the simulation results with online measurement and to demonstrate the possibilities of enhancing track quality assessment and maintenance by simulations of track–vehicle interaction.