Periodical Body Deformations are Optimal Strategies for Locomotion

A periodical cycle of body deformation is a common strategy for locomotion (see, for instance, birds, fishes, humans). The aim of this paper is to establish that the autopropulsion of deformable ob...

[1]  B. Bonnard,et al.  Optimal control theory and the efficiency of the swimming mechanism of the Copepod Zooplankton , 2017 .

[2]  Qiushi Li,et al.  Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off , 2018, Scientific Reports.

[3]  Pierre Martinon,et al.  Controllability and optimal strokes for N-link microswimmer , 2013, 52nd IEEE Conference on Decision and Control.

[4]  M. Tucsnak,et al.  An optimal control approach to ciliary locomotion , 2016 .

[5]  Eric Diller,et al.  Biomedical Applications of Untethered Mobile Milli/Microrobots , 2015, Proceedings of the IEEE.

[6]  Frédéric Jean,et al.  Uniform Estimation of Sub-Riemannian Balls , 2001 .

[7]  L. Rifford Sub-Riemannian Geometry and Optimal Transport , 2014 .

[8]  A. Najafi,et al.  Simple swimmer at low Reynolds number: three linked spheres. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Daniel Tam,et al.  Optimal stroke patterns for Purcell's three-link swimmer. , 2006, Physical review letters.

[10]  Robert Sinko,et al.  The role of mechanics in biological and bio-inspired systems , 2015, Nature Communications.

[11]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[12]  L. Heltai,et al.  Optimally Swimming Stokesian Robots , 2010, 1007.4920.

[13]  Jan F. Jikeli,et al.  Sperm navigation along helical paths in 3D chemoattractant landscapes , 2015, Nature Communications.

[14]  F. Jean,et al.  Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning , 2014 .

[15]  A. Ozcan,et al.  3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating , 2018, Scientific Reports.

[16]  D. Wiersma,et al.  Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. , 2016, Nature materials.

[17]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[18]  Eiichi Yoshida,et al.  An Optimal Control-Based Formulation to Determine Natural Locomotor Paths for Humanoid Robots , 2010, Adv. Robotics.

[19]  Mariana Medina-Sánchez,et al.  Medical microbots need better imaging and control , 2017, Nature.

[20]  A. DeSimone,et al.  Crawling on directional surfaces , 2014, 1401.5929.

[21]  François Alouges,et al.  Optimal Strokes for Low Reynolds Number Swimmers: An Example , 2008, J. Nonlinear Sci..

[22]  Kenichi Ogawa,et al.  Honda humanoid robots development , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  E. Lauga,et al.  Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability , 2018, Scientific Reports.

[24]  Jean-Paul Laumond,et al.  On the nonholonomic nature of human locomotion , 2008, Auton. Robots.

[25]  Richard B. Vinter,et al.  Lipschitz Continuity of Optimal Controls for State Constrained Problems , 2003, SIAM J. Control. Optim..

[26]  A. DeSimone,et al.  A robotic crawler exploiting directional frictional interactions: experiments, numerics and derivation of a reduced model , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  A. Munnier,et al.  CONTROLLABILITY OF 3D LOW REYNOLDS NUMBER SWIMMERS , 2014 .

[28]  B. Bonnard,et al.  The Purcell Three-link swimmer: some geometric and numerical aspects related to periodic optimal controls , 2017 .