Homotopical algebraic geometry. I. Topos theory.

This is the rst of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts. In this rst part we investigate a notion of higher topos. For this, we use S-categories (i.e. simplicially enriched categories) as models for certain kind of 1-categories, and we develop the notions of S-topologies, S-sites and stacks over them. We prove in particular, that for an S-category T endowed with an S-topology, there exists a model category of stacks over T , generalizing the model category structure on simplicial presheaves over a Grothendieck site of A. Joyal and R. Jardine. We also prove some analogs of the relations between topologies and localizing subcategories of the categories of presheaves, by proving that there exists a one-to-one correspodence between S-topologies on an S-category T , and certain left exact Bouseld localizations of the model category of pre-stacks on T . Based on the above results, we study the notion of model topos introduced by C. Rezk, and we relate it to our model categories of stacks over S-sites. In the second part of the paper, we present a parallel theory where S-categories, S-topologies and S-sites are replaced by model categories, model topologies and model sites. We prove that a canonical way to pass from the theory of stacks over model sites to the theory of stacks over S-sites is provided by the simplicial localization construction of Dwyer and Kan. As an example of application, we propose a denition of etale K-theory of ring spectra, extending the etale K-theory of commutative rings.

[1]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[2]  A. Grothendieck,et al.  Revêtements étales et groupe fondamental (SGA 1) , 2002, math/0206203.

[3]  Friedhelm Waldhausen,et al.  ALGEBRAIC K-THEORY OF SPACES I , 1978 .

[4]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[5]  R. Bonn Operads, Algebras and Modules in Model Categories and Motives , 2001 .

[6]  Birgit Richter,et al.  Robinson–Whitehouse complex and stable homotopy , 2000 .

[7]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[8]  Philip S. Hirschhorn,et al.  Model categories and more general abstract homotopy theory , 1997 .

[9]  W. Dwyer,et al.  HOMOTOPY COMMUTATIVE DIAGRAMS AND THEIR REALIZATIONS , 1989 .

[10]  G. Vezzosi,et al.  Brave new algebraic geometry and global derived moduli spaces of ring spectra , 2003, math/0309145.

[11]  Vladimir Hinich Homological algebra of homotopy algebras , 1997 .

[12]  A homotopy theory for stacks , 2001, math/0110247.

[13]  S. Schwede Stable homotopy of algebraic theories , 2001 .

[14]  A. Grothendieck Revetements etales et groupe fondamental , 1971 .

[15]  G. Vezzosi,et al.  A remark on K-theory and S-categories , 2002, math/0210125.

[16]  R. Vogt,et al.  Homotopy homomorphisms and the hammock localization , 1992 .

[17]  Homotopy Algebras for Operads , 2000, math/0002180.

[18]  A. K. Bousfield,et al.  On PL De Rham Theory and Rational Homotopy Type , 1976 .

[19]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[20]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[21]  J. Jardine,et al.  Simplicial Homotopy Theory: Progress in Mathematics 174 , 1999 .

[22]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[23]  HKR Theorem for Smooth S-algebras , 2003, math/0306243.

[24]  Homotopical and Higher Categorical Structures in Algebraic Geometry , 2003, math/0312262.

[25]  Tibor Beke,et al.  Sheafifiable homotopy model categories , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Hypercovers and simplicial presheaves , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Symmetric spectra , 1998, math/9801077.

[28]  K. Behrend Differential Graded Schemes II: The 2-category of Differential Graded Schemes , 2002, math/0212226.

[29]  Jon P. May Pairings of categories and spectra , 1980 .

[30]  B. Toën Homotopical and Higher Categorical Structures in Algebraic Geometry , 2003 .

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  Enumeration of Rational Curves Via Torus Actions , 1994, hep-th/9405035.

[33]  Monique Hakim,et al.  Topos annelés et schémas relatifs , 1972 .

[34]  J. May Operadic Categories, a ∞ -categories and N-categories , 2022 .

[35]  L. Illusie Complexe cotangent et déformations II , 1971 .

[36]  Benjamin A. Blander Local Projective Model Structures on Simplicial Presheaves , 2001 .

[37]  M. Basterra André–Quillen cohomology of commutative S-algebras , 1999 .

[38]  J. Jardine Stacks and the homotopy theory of simplicial sheaves , 2001 .

[39]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[40]  M. Kapranov,et al.  Derived Hilbert schemes , 2000, math/0005155.

[41]  Bertrand Toën Vers une interprétation galoisienne de la théorie de l'homotopie , 2002 .

[42]  Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[43]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[44]  J. Greenlees Axiomatic, enriched, and motivic homotopy theory , 2004 .

[45]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[46]  W. Dwyer,et al.  Simplicial localizations of categories , 1980 .

[47]  R. McCarthy,et al.  Γ-homology, topological André–Quillen homology and stabilization , 2002 .

[48]  Denis-Charles Cisinski,et al.  Théories homotopiques dans les topos , 2002 .

[49]  A Giraud-type characterization of the simplicial categories associated to closed model categories as $\infty$-pretopoi , 1999, math/9903167.

[50]  N. Strickland,et al.  MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .

[51]  V. Minasian André–Quillen spectral sequence for THH , 2003 .

[52]  P. Deligné Le Groupe Fondamental de la Droite Projective Moins Trois Points , 1989 .

[53]  M. Lydakis Simplicial functors and stable homotopy theory , 1998 .

[54]  Daniel Dugger Universal Homotopy Theories , 2000 .

[55]  Derived quot schemes , 1999, math/9905174.

[56]  From Hag To Dag: Derived Moduli Stacks , 2002, math/0210407.

[57]  Ross Street,et al.  Two-dimensional sheaf theory , 1982 .

[58]  Algebraic geometry over model categories A general approach to derived algebraic geometry , 2001, math/0110109.