Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative

This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann-Liouville fractional derivative defined in Hilfer et al. , and the space derivative of second order by the Riesz-Feller fractional derivative, and adding a function $\phi(x,t)$. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of Mittag-Leffler functions. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al., and the result very recently given by Tomovski et al.. At the end, extensions of the derived results, associated with a finite number of Riesz-Feller space fractional derivatives, are also investigated.

[1]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[2]  Z. Tomovski,et al.  Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator , 2012 .

[3]  Bruce Ian Henry,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[4]  S L Wearne,et al.  Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  J. Trujillo,et al.  On the solution of fractional evolution equations , 2004 .

[6]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[7]  G. Mittag-Leffler,et al.  Sur la répresentation analytique d'une branche uniforme d'une fonction monogène , 2016 .

[8]  Ajay K. Sharma,et al.  LINEAR SPACE-TIME FRACTIONAL REACTION-DIFFUSION EQUATION WITH COMPOSITE FRACTIONAL DERIVATIVE IN TIME , 2013 .

[9]  Trifce Sandev,et al.  Generalized space–time fractional diffusion equation with composite fractional time derivative , 2012 .

[10]  Ralf Metzler,et al.  Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative , 2011, Journal of Physics A: Mathematical and Theoretical.

[11]  A. M. Mathai,et al.  Fractional Reaction-Diffusion Equations , 2006, math/0604473.

[12]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[13]  Unified Fractional Kinetic Equation and a Fractional Diffusion Equation , 2004, math-ph/0406047.

[14]  A. M. Mathai,et al.  Distributed order reaction-diffusion systems associated with Caputo derivatives , 2011, 1109.4841.

[15]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[16]  A. M. Mathai,et al.  A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth , 1995 .

[17]  A. M. Mathai,et al.  Solutions of fractional reaction-diffusion equations in terms of Mittag-Leffler functions , 2006 .

[18]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[19]  A. M. Mathai,et al.  Reaction-Diffusion Systems and Nonlinear Waves , 2006 .

[20]  Arak M. Mathai,et al.  Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.

[21]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[22]  A. M. Mathai,et al.  Astrophysical thermonuclear functions for Boltzmann–Gibbs statistics and Tsallis statistics , 2004 .

[23]  Arak M. Mathai,et al.  Further solutions of fractional reaction-diffusion equations in terms of the H-function , 2007, J. Comput. Appl. Math..

[24]  H. M. Srivastava,et al.  Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .

[25]  Rudolf Hilfer,et al.  Experimental evidence for fractional time evolution in glass forming materials , 2002 .

[26]  A. M. Mathai,et al.  The fractional kinetic equation and thermonuclear functions , 2000 .

[27]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[28]  A. M. Mathai,et al.  On fractional kinetic equations , 2002 .

[29]  E. Lazzaro,et al.  Reaction-Diffusion Problems in the Physics of Hot Plasmas , 2000 .

[30]  Sune Jespersen,et al.  LEVY FLIGHTS IN EXTERNAL FORCE FIELDS : LANGEVIN AND FRACTIONAL FOKKER-PLANCK EQUATIONS AND THEIR SOLUTIONS , 1999 .

[31]  R. K. Saxena,et al.  Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative , 2012, Commun. Nonlinear Sci. Numer. Simul..

[32]  A. M. Mathai,et al.  On generalized fractional kinetic equations , 2004 .

[33]  A. M. Mathai,et al.  Solution of Generalized Fractional Reaction-Diffusion Equations , 2006 .

[34]  Arak M. Mathai,et al.  On a Generalized Entropy Measure Leading to the Pathway Model with a Preliminary Application to Solar Neutrino Data , 2013, Entropy.

[35]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[36]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[37]  ON FRACTIONAL RELAXATION , 2003 .

[38]  E. Savaş On generalized A , 2010 .

[39]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[40]  F. Mainardi,et al.  Fox H functions in fractional diffusion , 2005 .

[41]  Shyam L. Kalla,et al.  Solution of Space-Time Fractional Schrödinger Equation Occurring in Quantum Mechanics , 2010 .

[42]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[43]  G. Mittag-Leffler,et al.  Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .

[44]  A. M. Mathai,et al.  Computable solutions of fractional partial differential equations related to reaction-diffusion systems , 2011, 1109.6648.

[45]  Shyam L. Kalla,et al.  On fractional partial differential equations related to quantum mechanics , 2011 .

[46]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[47]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[48]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[49]  M. M. Djrbashian,et al.  Harmonic analysis and boundary value problems in the complex domain , 1993 .

[50]  Yury F. Luchko,et al.  OPERATIONAL METHOD FOR THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES , 2009 .

[51]  A. M. Mathai,et al.  Solutions of certain fractional kinetic equations and a fractional diffusion equation , 2007, 0704.1916.

[52]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[53]  Hari M. Srivastava,et al.  Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , 2009, Appl. Math. Comput..

[54]  William Feller,et al.  On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups generated by them , 2015 .