Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative
暂无分享,去创建一个
[1] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.
[2] Z. Tomovski,et al. Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator , 2012 .
[3] Bruce Ian Henry,et al. Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..
[4] S L Wearne,et al. Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] J. Trujillo,et al. On the solution of fractional evolution equations , 2004 .
[6] P. Bahr,et al. Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.
[7] G. Mittag-Leffler,et al. Sur la répresentation analytique d'une branche uniforme d'une fonction monogène , 2016 .
[8] Ajay K. Sharma,et al. LINEAR SPACE-TIME FRACTIONAL REACTION-DIFFUSION EQUATION WITH COMPOSITE FRACTIONAL DERIVATIVE IN TIME , 2013 .
[9] Trifce Sandev,et al. Generalized space–time fractional diffusion equation with composite fractional time derivative , 2012 .
[10] Ralf Metzler,et al. Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative , 2011, Journal of Physics A: Mathematical and Theoretical.
[11] A. M. Mathai,et al. Fractional Reaction-Diffusion Equations , 2006, math/0604473.
[12] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[13] Unified Fractional Kinetic Equation and a Fractional Diffusion Equation , 2004, math-ph/0406047.
[14] A. M. Mathai,et al. Distributed order reaction-diffusion systems associated with Caputo derivatives , 2011, 1109.4841.
[15] R. Hilfer. FRACTIONAL TIME EVOLUTION , 2000 .
[16] A. M. Mathai,et al. A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth , 1995 .
[17] A. M. Mathai,et al. Solutions of fractional reaction-diffusion equations in terms of Mittag-Leffler functions , 2006 .
[18] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .
[19] A. M. Mathai,et al. Reaction-Diffusion Systems and Nonlinear Waves , 2006 .
[20] Arak M. Mathai,et al. Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.
[21] Francesco Mainardi,et al. Approximation of Levy-Feller Diffusion by Random Walk , 1999 .
[22] A. M. Mathai,et al. Astrophysical thermonuclear functions for Boltzmann–Gibbs statistics and Tsallis statistics , 2004 .
[23] Arak M. Mathai,et al. Further solutions of fractional reaction-diffusion equations in terms of the H-function , 2007, J. Comput. Appl. Math..
[24] H. M. Srivastava,et al. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .
[25] Rudolf Hilfer,et al. Experimental evidence for fractional time evolution in glass forming materials , 2002 .
[26] A. M. Mathai,et al. The fractional kinetic equation and thermonuclear functions , 2000 .
[27] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[28] A. M. Mathai,et al. On fractional kinetic equations , 2002 .
[29] E. Lazzaro,et al. Reaction-Diffusion Problems in the Physics of Hot Plasmas , 2000 .
[30] Sune Jespersen,et al. LEVY FLIGHTS IN EXTERNAL FORCE FIELDS : LANGEVIN AND FRACTIONAL FOKKER-PLANCK EQUATIONS AND THEIR SOLUTIONS , 1999 .
[31] R. K. Saxena,et al. Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative , 2012, Commun. Nonlinear Sci. Numer. Simul..
[32] A. M. Mathai,et al. On generalized fractional kinetic equations , 2004 .
[33] A. M. Mathai,et al. Solution of Generalized Fractional Reaction-Diffusion Equations , 2006 .
[34] Arak M. Mathai,et al. On a Generalized Entropy Measure Leading to the Pathway Model with a Preliminary Application to Solar Neutrino Data , 2013, Entropy.
[35] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[36] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[37] ON FRACTIONAL RELAXATION , 2003 .
[38] E. Savaş. On generalized A , 2010 .
[39] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[40] F. Mainardi,et al. Fox H functions in fractional diffusion , 2005 .
[41] Shyam L. Kalla,et al. Solution of Space-Time Fractional Schrödinger Equation Occurring in Quantum Mechanics , 2010 .
[42] A. M. Mathai,et al. The H-Function: Theory and Applications , 2009 .
[43] G. Mittag-Leffler,et al. Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .
[44] A. M. Mathai,et al. Computable solutions of fractional partial differential equations related to reaction-diffusion systems , 2011, 1109.6648.
[45] Shyam L. Kalla,et al. On fractional partial differential equations related to quantum mechanics , 2011 .
[46] V E Lynch,et al. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.
[47] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[48] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[49] M. M. Djrbashian,et al. Harmonic analysis and boundary value problems in the complex domain , 1993 .
[50] Yury F. Luchko,et al. OPERATIONAL METHOD FOR THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES , 2009 .
[51] A. M. Mathai,et al. Solutions of certain fractional kinetic equations and a fractional diffusion equation , 2007, 0704.1916.
[52] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[53] Hari M. Srivastava,et al. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , 2009, Appl. Math. Comput..
[54] William Feller,et al. On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups generated by them , 2015 .