International Stellarator/Heliotron Database progress on high-beta confinement and operational boundaries

The International Stellarator/Heliotron Confinement Database was extended by high-β data compiled from the Large Helical System (LHD) and the W7-AS Stellarator. The main purpose is to enhance the basis for extrapolation of the global confinement properties to the reactor regime. The high-β configurations and experimental achievements in both devices are briefly described. The impact of beta on the configuration parameters and the global confinement is discussed. In particular, the confinement data in the high-β regime are compared with the ISS95 and ISS04 scaling laws which were derived from a database including relatively few high-β cases. In addition, a Bayesian model comparison approach is used to test scaling predictions derived from basic confinement models. Unlike in tokamaks, the operational boundaries in stellarators and helical systems are determined by the available heating power and confinement properties rather than by disruptive stability or density limits. The role of a pressure induced equilibrium limit is discussed in particular. An attempt is made to compare the high-β data with tokamak confinement and with operational boundaries observed in tokamaks. Further extensions of the database by parameters characterizing stability and local transport properties are proposed.

[1]  R. Jaenicke,et al.  First Island Divertor Experiments on the W7-AS Stellarator. Invited Paper , 2001 .

[2]  M. Greenwald Density limits in toroidal plasmas , 2002 .

[3]  A. Werner,et al.  Significance of MHD Effects in Stellarator Confinement , 2006 .

[4]  Osamu Kaneko,et al.  Progress of High-Beta Experiments in Stellarator/Heliotron , 2004 .

[5]  M. Shoji,et al.  An Overview of the Large Helical Device Project , 1998 .

[6]  R. E. Hatcher,et al.  Physics of the compact advanced stellarator NCSX , 2001 .

[7]  Murakami,et al.  Bootstrap-current experiments in a toroidal plasma-confinement device. , 1991, Physical review letters.

[8]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[9]  E. D. Fredrickson,et al.  Experiments close to the beta-limit in W7-AS , 2003 .

[10]  J. W. Connor,et al.  Scaling laws for plasma confinement , 1977 .

[11]  L. Giannone,et al.  Physics of the density limit in the W7-AS stellarator , 2000 .

[12]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[13]  Michel Howard Kevin,et al.  Development and application of HINT2 to helical system plasmas , 2006 .

[14]  Y. Takeiri,et al.  Scalings of energy confinement and density limit in stellarator/heliotron devices , 1990 .

[15]  J. Harris,et al.  Characterization of energy confinement in net-current free plasmas using the extended International Stellarator Database , 2005 .

[16]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[17]  Z. A. Pietrzyk,et al.  Effect of plasma shaping on confinement and MHD behaviour in TCV , 1996 .

[18]  L. Giannone,et al.  Radiation power profiles and density limit with a divertor in the W7-AS stellarator , 2002 .

[19]  V. Shafranov Magnetohydrodynamic theory of plasma equilibrium and stability in stellarators: Survey of results , 1983 .

[20]  Kazushi Ikeda,et al.  Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device , 2006 .

[21]  H. Yamada,et al.  Temperature dependence of the thermal diffusivity in high-collisionality regimes in the large helical device , 2005 .

[22]  F. Sardei,et al.  W7-AS: One step of the Wendelstein stellarator line , 2005 .

[23]  Anthony B. Murphy,et al.  Initial operation of the Wendelstein 7AS advanced stellarator , 1989 .

[24]  H. Yamada,et al.  Characterization and operational regime of high density plasmas with internal diffusion barrier observed in the Large Helical Device , 2007 .

[25]  H. Yamada,et al.  MHD study of the reactor-relevant high-beta regime in the Large Helical Device , 2008 .

[26]  K. Kawahata,et al.  Recent Progress of MHD Study in High-Beta Plasmas of LHD , 2006 .

[27]  Hiroshi Yamada,et al.  Change of plasma boundaries due to beta in heliotron plasma with helical divertor configuration , 2007 .

[28]  David E Williamson,et al.  Physics issues of compact drift optimized stellarators , 2001 .

[29]  T. Morisaki,et al.  Bifurcation of equilibria between with and without a large island in the large helical device , 2005 .

[30]  K. Kawahata,et al.  Configuration Effects on Local Transport in High-Beta LHD Plasmas , 2008 .

[31]  A. Dinklage,et al.  Energy Confinement Scaling for High-ß Plasmas in the W7-AS Stellarator , 2007 .

[32]  Kazushi Ikeda,et al.  Configuration Effect on Energy Confinement and Local Transport in LHD and Contribution to the International Stellarator Database , 2004 .

[33]  A. Werner,et al.  Physical model assessment of the energy confinement time scaling in stellarators , 2007 .

[34]  E. J. Strait,et al.  Stability of high beta tokamak plasmas , 1994 .

[35]  Kenji Harafuji,et al.  Computational study of three-dimensional magnetohydrodynamic equilibria in toroidal helical systems , 1987 .

[36]  K. McCormick,et al.  Major results from the stellarator Wendelstein 7-AS , 2008 .

[37]  E. D. Fredrickson,et al.  Closed-loop feedback of MHD instabilities on DIII-D† , 2001 .

[38]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[39]  M. Shoji,et al.  Observation of stable superdense core plasmas in the large helical device. , 2006, Physical review letters.

[40]  G. Grieger The WENDELSTEIN 7-X Project , 1998 .

[41]  Henry S. Greenside,et al.  Calculation of three-dimensional MHD equilibria with islands and stochastic regions , 1986 .

[42]  F. Sardei,et al.  Status of the International Stellarator/Heliotron Profile Database , 2008 .

[43]  Hideo Sugama,et al.  Velocity–space structures of distribution function in toroidal ion temperature gradient turbulence , 2011 .

[44]  K. Kawahata,et al.  Transport Analysis of High-Beta Plasmas on LHD , 2007 .

[45]  Shi Bing-ren STABILITY OF HIGH-BETA TOKAMAK PLASMAS , 2005 .

[46]  J. Melo,et al.  Overview and summary , 1985 .

[47]  J. Connor Invariance principles and plasma confinement , 1988 .

[48]  Robert L. Dewar,et al.  Plasma Physics for Nuclear Fusion , 1979 .

[49]  N. Nakajima,et al.  Effects of global MHD instability on operational high beta-regime in LHD , 2005 .

[50]  Donald Monticello,et al.  Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator , 2007 .

[51]  V. Pustovitov Fundamental Stellarator MHD Theory , 1994 .