Serrated Flow Accompanied with Dynamic Type Transition of the Portevin–Le Chatelier Effect in Austenitic Stainless Steel

[1]  Y. Estrin,et al.  Dynamic strain aging mechanisms in a metastable austenitic stainless steel , 2021 .

[2]  V. Ganesan,et al.  Tensile Flow Analysis of Austenitic Type 316LN Stainless Steel: Effect of Nitrogen Content , 2021, Journal of Materials Engineering and Performance.

[3]  Y. Lin,et al.  A physically-based model considering dislocation–solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures , 2019 .

[4]  C. Fressengeas,et al.  Spatiotemporal correlations in the Portevin-Le Chatelier band dynamics during the type B - type C transition , 2019, Materials Science and Engineering: A.

[5]  Y. Lin,et al.  Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy , 2018, Materials Characterization.

[6]  M. Koyama,et al.  Room-temperature blue brittleness of Fe-Mn-C austenitic steels , 2017 .

[7]  Karin A. Dahmen,et al.  Serration and noise behaviors in materials , 2017 .

[8]  G. Ananthakrishna,et al.  Correlation between band propagation property and the nature of serrations in the Portevin–Le Chatelier effect , 2015 .

[9]  B. Klusemann,et al.  Thermomechanical characterization of Portevin-Le Chatelier bands in AlMg3 (AA5754) and modeling based on a modified Estrin-McCormick approach , 2015 .

[10]  Qingchuan Zhang,et al.  Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin–Le Chatelier effect , 2012 .

[11]  Bob Svendsen,et al.  Investigation of PLC band nucleation in AA5754 , 2012 .

[12]  Ahmet Yilmaz,et al.  The Portevin–Le Chatelier effect: a review of experimental findings , 2011, Science and technology of advanced materials.

[13]  S. Forest,et al.  Portevin–Le Chatelier (PLC) instabilities and slant fracture in C–Mn steel round tensile specimens , 2011 .

[14]  P. Jacques,et al.  Characterisation of the Portevin-Le Châtelier effect affecting an austenitic TWIP steel based on digital image correlation , 2010 .

[15]  Claude Fressengeas,et al.  Crossover from continuous to discontinuous propagation in the Portevin–Le Chatelier effect , 2010 .

[16]  S. Forest,et al.  Numerical aspects in the finite element simulation of the Portevin–Le Chatelier effect , 2010 .

[17]  D. Wilkinson,et al.  The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy , 2007 .

[18]  Xuedong Chen,et al.  Three types of Portevin–Le Chatelier effects: Experiment and modelling , 2007 .

[19]  Wenzhe Chen,et al.  Effect of dynamic strain aging on high temperature properties of austenitic stainless steel , 2004 .

[20]  Yuri Estrin,et al.  Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect , 1996 .

[21]  A. V. D. Beukel On the mechanism of serrated yielding and dynamic strain ageing , 1980 .

[22]  A. van den Beukel,et al.  Theory of the effect of dynamic strain aging on mechanical properties , 1975 .

[23]  P. G McCormigk,et al.  A model for the Portevin-Le Chatelier effect in substitutional alloys , 1972 .

[24]  A. Cottrell,et al.  LXXXVI. A note on the Portevin-Le Chatelier effect , 1953 .

[25]  S. Forest,et al.  Effect of Lüders and Portevin–Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations , 2021 .

[26]  G. Ananthakrishna,et al.  Chapter 57 Collective behaviour of dislocations in plasticity , 2002 .

[27]  A. Cottrell,et al.  Dislocation Theory of Yielding and Strain Ageing of Iron , 1949 .