X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue

The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. OCIS codes: (170.3880) Medical and biological imaging; (170.6960) Tomography; (340.7450) X-ray interferometry; (110.7440) X-ray imaging; (180.7460) X-ray microscopy. References and links 1. R. Baldock, J. Bard, D. R. Davidson, and G. Morriss-Kay, eds., Kaufman’s Atlas of Mouse Development Supplement (Academic, 2016). 2. E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015). 3. B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dynam. 238, 632–640 (2009). 4. M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012). 5. J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004). Vol. 8, No. 2 | 1 Feb 2017 | BIOMEDICAL OPTICS EXPRESS 1257 #282373 Journal © 2017 https://doi.org/10.1364/BOE.8.001257 Received 7 Dec 2016; revised 5 Jan 2017; accepted 13 Jan 2017; published 31 Jan 2017 6. M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010). 7. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003). 8. G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013). 9. T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013). 10. W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. IzpisúaBelmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006). 11. L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010). 12. T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011). 13. S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012). 14. R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” Phys. Today 7, 23–26 (2000). 15. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996). 16. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999). 17. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002). 18. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003). 19. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005). 20. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006). 21. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007). 22. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010). 23. M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012). 24. G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010). 25. K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015). 26. G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012). 27. I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013). 28. A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013). 29. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36, 55–57 (2011). 30. J. Rizzi, P. Mercère, M. Idir, P. D. Silva, G. Vincent, and J. Primot, “X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer,” Opt. Express 21, 17340–17351 (2013). 31. A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings 1696 (2016). 32. A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016). 33. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, Vol. 8, No. 2 | 1 Feb 2017 | BIOMEDICAL OPTICS EXPRESS 1258

[1]  Robert Wilson,et al.  Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines , 2015, Nucleic Acids Res..

[2]  Franz Pfeiffer,et al.  Toward Clinically Compatible Phase-Contrast Mammography , 2015, PloS one.

[3]  Richard Baldock,et al.  The atlas of mouse development eHistology resource , 2015, Development.

[4]  V Ntziachristos,et al.  Three‐dimensional imaging of whole mouse models: comparing nondestructive X‐ray phase‐contrast micro‐CT with cryotome‐based planar epi‐illumination imaging , 2013, Journal of microscopy.

[5]  F. Pfeiffer,et al.  X-ray grating-based phase tomography for 3D histology , 2013 .

[6]  M. Idir,et al.  X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer. , 2013, Optics express.

[7]  Richard Baldock,et al.  Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice , 2013, Disease Models & Mechanisms.

[8]  Franz Pfeiffer,et al.  Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology , 2012, Scientific Reports.

[9]  R. Mark Henkelman,et al.  A novel 3D mouse embryo atlas based on micro-CT , 2012, Development.

[10]  K. Uesugi,et al.  Phase-contrast X-ray microtomography of mouse fetus , 2012, Biology Open.

[11]  Christoph Rau,et al.  Coherent imaging at the Diamond beamline I13 , 2011 .

[12]  W. Weninger,et al.  High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions , 2011, Cells Tissues Organs.

[13]  W. Weninger,et al.  Imaging heart development using high-resolution episcopic microscopy , 2011, Current opinion in genetics & development.

[14]  Timm Weitkamp,et al.  Two-dimensional x-ray grating interferometer. , 2010, Physical review letters.

[15]  Franz Pfeiffer,et al.  High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast , 2010, Journal of The Royal Society Interface.

[16]  R. M. Henkelman,et al.  Mouse embryonic phenotyping by morphometric analysis of MR images , 2010, Physiological genomics.

[17]  Ziyu Wu,et al.  Low-dose, simple, and fast grating-based X-ray phase-contrast imaging , 2010, Proceedings of the National Academy of Sciences.

[18]  Z. Zhong,et al.  Phase-sensitive X-ray imaging of synovial joints. , 2009, Osteoarthritis and cartilage.

[19]  Tian Xu,et al.  The expanding role of mouse genetics for understanding human biology and disease , 2008, Disease Models & Mechanisms.

[20]  O. Bunk,et al.  Hard-X-ray dark-field imaging using a grating interferometer. , 2008, Nature materials.

[21]  A Bravin,et al.  High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography , 2007, Physics in medicine and biology.

[22]  Atsushi Momose,et al.  Phase Tomography by X-ray Talbot Interferometry for Biological Imaging , 2006 .

[23]  Diego Rasskin-Gutman,et al.  High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology , 2006, Anatomy and Embryology.

[24]  Franz Pfeiffer,et al.  X-ray phase imaging with a grating interferometer. , 2005, Optics express.

[25]  Atsushi Momose,et al.  Demonstration of X-Ray Talbot Interferometry , 2003 .

[26]  James Sharpe,et al.  Optical projection tomography as a new tool for studying embryo anatomy , 2003, Journal of anatomy.

[27]  P Cloetens,et al.  Fractional Talbot imaging of phase gratings with hard x rays. , 1997, Optics letters.

[28]  Atsushi Momose,et al.  Phase–contrast X–ray computed tomography for observing biological soft tissues , 1996, Nature Medicine.

[29]  T Tschernig,et al.  An elegant technique for ex vivo imaging in experimental research-Optical coherence tomography (OCT). , 2013, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[30]  David M Paganin,et al.  Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size. , 2011, Optics letters.

[31]  Amy Slender,et al.  Down ’ s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc 1 mouse , 2010 .