Continuité et différentiabilité d'Éléments propres: Application à l'optimisation de structures

The buckling load of a structure may usually be computed with an eigenvalue problem: it is the eigenvalue of smallest absolute value. In optimizing structures with a constraint on the buckling load, repeated eigenvalues are likely to occur. We prove continuity and differentiability results of eigenelements with respect to design variables using the variational characterization of eigenvalues. We illustrate these results with a classical problem: buckling of a beam. Application to arch buckling is presented in another article.

[1]  Optimal design and eigenvalue problems , 1978 .

[2]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[3]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[4]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[5]  Daniel D. Joseph,et al.  Parameter and domain dependence of eigenvalues of elliptic partial differential equations , 1967 .

[6]  N. Olhoff,et al.  On single and bimodal optimum buckling loads of clamped columns , 1977 .

[7]  D. Joseph Uniqueness criteria for the conduction-diffusion solution of the Boussinesq equations , 1969 .

[8]  B. Rousselet,et al.  Dependence of the buckling load of a nonshallow arch with respect to the shape of its midcurve , 1990 .

[9]  J. Zolésio Semi Derivatives of Repeated Eigenvalues , 1981 .

[10]  Nondifferentiable Optimization Problems for Elliptic Systems , 1985 .

[11]  Edward J. Haug,et al.  Design Sensitivity Analysis in Structural Mechanics. III. Effects of Shape Variation , 1982 .

[12]  B. Rousselet,et al.  Shape design sensitivity of a membrane , 1983 .

[13]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[14]  Tosio Kato Perturbation theory for linear operators , 1966 .

[15]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[16]  E. F. Masur Optimal structural design under multiple eigenvalue constraints , 1984 .

[17]  Ch. Sturm,et al.  Cours de mécanique de l'École polytechnique , 1881 .

[18]  Edward J. Haug,et al.  Design Sensitivity Analysis in Structural Mechanics.II. Eigenvalue Variations , 1980 .