B-spline FIR filters

This paper presents an efficient procedure for the design of interpolated FIR (IFIR) filters with linear phase. The algorithm uses the uniform B-spline function as an interpolator and solves the optimal Chebyshev approximation problem on the optimal subinterval. The technique can be used for the design of general lowpass, highpass and bandpass filters. While the number of multiplications of the IFIR filter is dependent on the bandwidth and the center frequency of the desired filter, it provides the minimum number of multiplications achievable and nearly always provides a substantial reduction when compared to Parks-McClellan designs.

[1]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[2]  T. Parks,et al.  Thinning digital filters: A piecewise-exponential approximation approach , 1983 .

[3]  Leonard A. Ferrari,et al.  A unified approach to IFIR filter design using B-spline functions , 1991, IEEE Trans. Signal Process..

[4]  A. N. Willson,et al.  A new approach to FIR digital filters with fewer multipliers and reduced sensitivity , 1983 .

[5]  Jacques Lucien Daguet,et al.  Interpolation, extrapolation, and reduction of computation speed in digital filters , 1974 .

[6]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[7]  Lawrence R. Rabiner,et al.  Techniques for Designing Finite-Duration Impulse-Response Digital Filters , 1971 .

[8]  E. Hofstetter A New Technique for the Design of Non-Recursive Digital Filters , 1970 .

[9]  S. Shinnaka,et al.  Recursive Algorithms for Implementing Digital Image Filters , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  L. Rabiner,et al.  Optimum FIR Digital Filter Implementations for Decimation, Interpolation, and Narrow-Band Filtering , 1975 .

[11]  L. Rabiner,et al.  A computer program for designing optimum FIR linear phase digital filters , 1973 .

[12]  S. Mitra,et al.  Interpolated finite impulse response filters , 1984 .

[13]  Jack Sklansky,et al.  A note on duhamel integrals and running average filters , 1985, Comput. Vis. Graph. Image Process..

[14]  E. Cheney Introduction to approximation theory , 1966 .

[15]  C. Sidney Burrus,et al.  Efficient recursive realizations of FIR filters , 1984 .

[16]  Sanjit K. Mitra,et al.  Design of narrow-band FIR bandpass digital filters with reduced arithmetic complexity , 1987 .

[17]  P. Vaidyanathan,et al.  On prefilters for digital FIR filter design , 1985 .

[18]  B. Gold,et al.  A direct search procedure for designing finite duration impulse response filters , 1969 .

[19]  A. N. Willson,et al.  Some efficient digital prefilter structures , 1984 .

[20]  C. Sidney Burrus,et al.  Efficient recursive realizations of FIR filters , 1984 .

[21]  Sanjit K. Mitra,et al.  Design of computationally efficient interpolated fir filters , 1988 .

[22]  H. Helms Digital filters with equiripple or minimax responses , 1971 .