Photochemical isomerization in solution. Photophysics of diphenyl butadiene

We have examined the radiative and nonradiative decay rates of diphenyl butadiene in hydrocarbon and polar solvents as a function of temperature and pressure. We demonstrate that the radiative rate constant has a small dependence on solvent polarizability, in contrast to what is observed for diphenylhexatriene. We make an explicit separation of the internal molecular barrier to isomerization and the barrier due to frictional forces in the solvent. The energy of the internal barrier to isomerization is less than the activation energy observed in solution, and depends on the polarizability and polarity of the solvent. In contrast to diphenylhexatriene, it decreases, in more polar solvents. We compare the viscosity dependence of the barrier crossing process with Kramers’ theory, the recent kinetic theory result of Skinner and Wolynes [J. Chem. Phys. 69, 2143 (1978)], and the free volume theory of Gegiou, Muzkat, and Fischer, [J. Amer. Chem. Soc. 90, 12 (1968)]. Our data clearly show that the isomerization process is in the intermediate friction limit and we obtain experimental values for the parameters of the three theories. Over the viscosity region studied, Kramers’ and Skinner and Wolynes’ equations coincide exactly and do not reproduce the functional dependence of the radiationless rate pre‐exponential factor as well as the free volume theory. We speculate that it may be necessary to consider the frequency dependence of medium viscosity.

[1]  R. Schwartz,et al.  A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids , 1981 .

[2]  J. Hynes,et al.  Reactive modes in condensed phase reactions , 1981 .

[3]  R. Birge,et al.  Two‐photon spectroscopy of diphenylbutadiene. The nature of the lowest‐lying 1Ag*−ππ* state , 1980 .

[4]  G. Ponterini,et al.  Polarization of cis-trans photoisomerization funnels, size and suddenness , 1980 .

[5]  D. Chandler,et al.  Stochastic molecular dynamics study of trans–gauche isomerization processes in simple chain molecules , 1980 .

[6]  R. J. Robbins,et al.  Photophysics of Aqueous Tryptophan: pH and Temperature Effects , 1980 .

[7]  R. Hochstrasser Picosecond processes in the isomerism of stilbenes , 1980 .

[8]  John S. McCaskill,et al.  Fokker-Planck interpretation of picosecond intramolecular dynamics in solutions , 1979 .

[9]  C. Wittig,et al.  Picosecond absorption recovery of diphenyl butadiene , 1979 .

[10]  M. C. Adams,et al.  Time resolved fluorescence of trans‐Stilbene in the picosecond regime , 1979 .

[11]  H. G. Drickamer,et al.  High pressure fluorescence studies of radiative and nonradiative processes in diphenyl hexatriene, diphenyl octatetraene, and retinyl acetate , 1979 .

[12]  J. Miehé,et al.  Picosecond analysis of trans-stilbene fluorescence , 1979 .

[13]  J. B. Birks,et al.  The fluorescence of all-trans diphenyl polyenes , 1978 .

[14]  P. Wolynes,et al.  Relaxation processes and chemical kinetics , 1978 .

[15]  G. E. Leroi,et al.  Observation of the low-energy 1Ag state of diphenylhexatriene by two-photon excitation spectroscopy , 1978 .

[16]  P. Tavan,et al.  The "phantom" photochemical singlet state of stilbene and its diphenylpolyene relative , 1978 .

[17]  J. Andrews,et al.  Environmental effects on radiative rate constants with applications to linear polyenes , 1978 .

[18]  K. Yoshihara,et al.  Temperature dependence of fluorescence lifetimes of trans-stilbene , 1977 .

[19]  J. B. Birks,et al.  The photo-isomerization of stilbene , 1976 .

[20]  R. Cundall,et al.  Solvent and temperature effects on the fluorescence of all-trans-1,6-diphenyl-1,3,5-hexatriene , 1975 .

[21]  G. Orlandi,et al.  Model for the direct photo-isomerization of stilbene , 1975 .

[22]  B. Hudson,et al.  Polyene spectroscopy: The lowest energy excited singlet state of diphenyloctatetraene and other linear polyenes , 1973 .

[23]  J. Campbell,et al.  Raman spectroscopy in liquids at high pressure , 1973 .

[24]  S. Sharafy,et al.  Viscosity dependence of fluorescence quantum yields , 1971 .

[25]  Th. Förster,et al.  Die Viskositätsabhängigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme , 1971 .

[26]  Robert Zwanzig,et al.  Hydrodynamic Theory of the Velocity Correlation Function , 1970 .

[27]  H. Seidel Zahlenwerte und Funktionen , 1965 .

[28]  Ernst Fischer,et al.  Temperature Dependence of Photoisomerization. III.1 Direct and Sensitized Photoisomerization of Stilbenes , 1964 .

[29]  J. B. Birks,et al.  The relations between the fluorescence and absorption properties of organic molecules , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[31]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , 1951 .

[32]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[33]  M. C. Adams,et al.  Direct observation of effects of viscosity on the picosecond lifetimes of trans-stilbene , 1980 .

[34]  J. Jaraudias Dependence on the viscosity and the nature of the solvent of the relaxation pathways of the first singlet excited state of 3,3′-Diethyloxadicarbocyanine iodide , 1980 .

[35]  E. G.,et al.  The Physics of High Pressure , 1933, Nature.

[36]  Percy Williams Bridgman,et al.  The physics of high pressure , 1931 .