Modelling of combustion and sorbent reactions in three-dimensional flow environment of a circulating fluidized bed furnace

Kari Myöhänen Modelling of combustion and sorbent reactions in three-dimensional flow environment of a circulating fluidized bed furnace Lappeenranta 2011 161 pages Acta Universitatis Lappeenrantaensis 449 Diss. Lappeenranta University of Technology ISBN 978-952-265-160-0, ISBN 978-952-265161-7 (PDF), ISSN 1456-4491 This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled threedimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semiempirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential subphenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.

[1]  Sanna Hämäläinen,et al.  The effect of institutional settings on accounting conservatism – Empirical evidence from the Nordic countries and the transitional economies of Europe , 2011 .

[2]  Prabir Basu,et al.  A model for prediction of transient response to the change of fuel feed rate to a circulating fluidized bed boiler furnace , 1997 .

[3]  Guangxi Yue,et al.  Latest Development of CFB Boilers in China , 2009 .

[4]  Tero Ahonen,et al.  Monitoring of centrifugal pump operation by a frequency converter , 2011 .

[5]  Xuchang Xu,et al.  Modelling of dense gas-particle flow in a circulating fluidized bed by Distinct Cluster Method (DCM) , 2009 .

[6]  Junwu Wang,et al.  Flow structures inside a large-scale turbulent fluidized bed of FCC particles: Eulerian simulation with an EMMS-based sub-grid scale model , 2010 .

[7]  Ville Tossavainen,et al.  Modeling Air Jet Penetration Into Gas-Particle Suspension Cross Flow , 2003 .

[8]  Tatiana Minav,et al.  Electric-drive-based control and electric energy regeneration in a hydraulic system , 2011 .

[9]  Lunbo Duan,et al.  Latest Evolution of Oxy-Fuel Combustion Technology in Circulating Fluidized Bed , 2009 .

[10]  Timo Hyppänen,et al.  Towards time-averaged CFD modelling of circulating fluidized beds , 2008 .

[11]  Samuli Kortelainen Analysis of the Sources of Sustained Competitive Advantage , 2012 .

[12]  Jinghai Li,et al.  Modeling of Circulating Fluidized Bed Combustion , 2010 .

[13]  Mooson Kwauk,et al.  The Dynamics of Fast Fluidization , 1980 .

[14]  D. Barletta,et al.  Modelling the SO2–limestone reaction under periodically changing oxidizing/reducing conditions: the influence of cycle time on reaction rate , 2002 .

[15]  B. R. Stanmore,et al.  Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration , 2005 .

[16]  J. Werther,et al.  Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed , 2005 .

[18]  M. M. Marchetti,et al.  ALSTOM’s Large CFBs and Results , 2003 .

[19]  A. Lyngfelt,et al.  A fluidized-bed combustion process with inherent CO2 separation; Application of chemical-looping combustion , 2001 .

[20]  Raymond F. Bishop,et al.  Thermo-fluid Dynamic Theory of Two-Phase Flow , 1975 .

[21]  Vasilii Zakhvalinskii Magnetic and transport properties of LaMnO3+δ, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1-xSrxMn1-yFeyO3 , 2010 .

[22]  J. Ritvanen,et al.  Three-dimensional modelling of a 300 MWe Flexi-Burn® CFB for multifuel combustion in oxygen-fired and air-fired modes , 2011 .

[23]  Joachim Werther,et al.  Reactive gas–solids flows in large volumes—3D modeling of industrial circulating fluidized bed combustors , 2010 .

[24]  Particle Collection Theory for Cyclone Separators: Summary and Comparison , 2006 .

[25]  Antti Tourunen,et al.  Development and Validation of a 3-Dimensional CFB Furnace Model , 2009 .

[26]  Tomasz G. Drozda,et al.  Computational Fluid Mechanics and Heat Transfer , 2013 .

[27]  Nurdil Eskin,et al.  Two-dimensional coal combustion modeling of CFB , 2008 .

[28]  A. Hayhurst,et al.  The devolatilization of coal and a comparison of chars produced in oxidizing and inert atmospheres in fluidized beds , 1995 .

[29]  R. Fox,et al.  Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: Quantifying the coupling between hydrodynamic forces and particle velocity fluctuations , 2010 .

[30]  Alvaro Sanz,et al.  Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state , 2005 .

[31]  Qinhui Wang,et al.  Particle population balance model for a circulating fluidized bed boiler , 2003 .

[32]  J. Werther,et al.  Solids mixing in the bottom zone of a circulating fluidized bed , 2001 .

[33]  R. Glowinski,et al.  Fluidization of 1204 spheres: simulation and experiment , 2002, Journal of Fluid Mechanics.

[34]  Markku Jokinen,et al.  Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations , 2010 .

[35]  Christopher M. Wensrich,et al.  Modelling of multiple intra-time step collisions in the hard-sphere discrete element method , 2010 .

[36]  Ari Kokko,et al.  Biomass and Coal Co-Combustion in Utility Scale: Operating Experience of Alholmens Kraft , 2005 .

[37]  Katja Hynynen,et al.  Broadband excitation in the system identification of active magnetic bearing rotor systems , 2011 .

[38]  P. Basu,et al.  An investigation into heat transfer in circulating fluidized beds , 1987 .

[39]  David R. Owen,et al.  Combined three‐dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment , 2010 .

[40]  David W. Pershing,et al.  Mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles , 1989 .

[41]  Haiying Qi,et al.  Modeling of drag with the eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow , 2007 .

[42]  Juan Adánez,et al.  Sulfur release during the devolatilization of large coal particles , 1996 .

[43]  Petra Pekkanen Delay reduction in courts of justice – possibilities and challenges of process improvement in professional public organizations , 2011 .

[44]  Joachim Werther,et al.  Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing , 2001 .

[45]  J. Mačák,et al.  Mathematical Model for the Gasification of Coal under Pressure , 1978 .

[46]  Ng Niels Deen,et al.  Gas−Solid Turbulent Flow in a Circulating Fluidized Bed Riser: Experimental and Numerical Study of Monodisperse Particle Systems , 2009 .

[47]  Filip Johnsson,et al.  Fluid dynamic modeling of CFB units , 2002 .

[48]  Joachim Werther,et al.  Solids Motion and Mixing , 1997 .

[49]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[50]  Robyn A. Bell Numerical modelling of multi-particle flows in bubbling gas-solid fluidised beds , 2000 .

[51]  Keizo Yabumoto,et al.  Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation , 2008 .

[52]  Jinghai Li,et al.  3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler , 2010 .

[53]  A. Nikolopoulos,et al.  Numerical Investigation of 3-D Transient Combusting Flow in a 1.2MWth Pilot Power Plant , 2009 .

[54]  D. Gidaspow,et al.  Hydrodynamics of circulating fluidized beds: Kinetic theory approach , 1991 .

[55]  Lothar Reh,et al.  The circulating fluid bed reactor — its main features and applications , 1986 .

[56]  Wei Ge,et al.  CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient , 2003 .

[57]  P. Gilot,et al.  The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: Experiments and modelling , 2009 .

[58]  Ronald W. Breault,et al.  A review of gas–solid dispersion and mass transfer coefficient correlations in circulating fluidized beds , 2006 .

[59]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[60]  A. Gungor A study on the effects of operational parameters on bed-to-wall heat transfer , 2009 .

[61]  Yunhan Xiao,et al.  Experiment and CFD simulation of gas–solid flow in the riser of dense fluidized bed at high gas velocity , 2010 .

[62]  Antti Tourunen,et al.  A study of combustion phenomena in circulating fluidized beds by developing and applying experimental and modelling methods for laboratory-scale reactors , 2010 .

[63]  Juan Adánez,et al.  A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors , 1995 .

[64]  Nirmal V. Gnanapragasam,et al.  Numerical modeling of bed-to-wall heat transfer in a circulating fluidized bed combustor based on cluster energy balance , 2008 .

[65]  Jouni Sampo,et al.  On convergence of transforms based on parabolic scaling , 2010 .

[66]  K. Dam-Johansen,et al.  Initial Kinetics of the Direct Sulfation of Limestone , 2008 .

[67]  Filip Johnsson,et al.  Gas mixing in circulating fluidised-bed risers , 2000 .

[68]  J. C. Abanades,et al.  Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor. , 2011 .

[69]  Irina Savitskaya,et al.  Environmental inFluences on the Adoption of Open Innovation: Analysis of Structural, Institutional and Cultural Impacts , 2011 .

[70]  Kari Myöhänen,et al.  Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems , 2009 .

[71]  Jinghai Li,et al.  A review of multiscale CFD for gas-solid CFB modeling , 2010 .

[72]  J. Grace,et al.  Hydrodynamics of gas-solid fluidization , 1995 .

[73]  Arto Hotta,et al.  Foster Wheeler’s Solutions for Large Scale CFB Boiler Technology: Features and Operational Performance of Łagisza 460 MWe CFB Boiler , 2009 .

[74]  S. Vassilev,et al.  An overview of the chemical composition of biomass , 2010 .

[75]  James Wei,et al.  A model for moving‐bed coal gasification reactors , 1978 .

[76]  Ari Kettunen,et al.  Model-Based Analysis of Transient Behavior of Large Scale CFB Boilers , 2003 .

[77]  Syamlal The particle-particle drag term in a multiparticle model of fluidization , 1987 .

[78]  Andreas Johansson Solids Flow Pattern in Circulating Fluidized-bed Boilers , 2005 .

[79]  A. Yu,et al.  Discrete particle simulation of particulate systems: Theoretical developments , 2007 .

[80]  M. Hupa,et al.  Product layer development during sulfation and sulfidation of uncalcined limestone particles at elevated pressures , 1998 .

[81]  Kelvin Chu,et al.  Numerical simulation of complex particle-fluid flows , 2006 .

[82]  Filip Johnsson,et al.  A novel technique for particle tracking in cold 2-dimensional fluidized beds—simulating fuel dispersion , 2006 .

[83]  Daria Podmetina,et al.  Innovation and Internationalisation in Russian Companies: Challenges and Opportunities for Open Innovation and Cooperation , 2011 .

[84]  Irina Turku,et al.  Adsorptive removal of harmful organic compound from aqueous solutions , 2010 .

[85]  P. J. O'rourke,et al.  A model for collisional exchange in gas/liquid/solid fluidized beds , 2009 .

[86]  D. Snider,et al.  Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition) , 2010 .

[87]  Filip Johnsson,et al.  Modeling of fuel mixing in fluidized bed combustors , 2008 .

[88]  Power-Gen Asia Why Build a Circulating Fluidized Bed Boiler to Generate Steam and Electric Power , 2000 .

[89]  Edward J. Anthony,et al.  Sulfation phenomena in fluidized bed combustion systems , 2001 .

[90]  Jan Baeyens,et al.  Hydrodynamic modelling of the axial density profile in the riser of a low‐density circulating fluidized bed , 2001 .

[91]  Filip Johnsson,et al.  Fluid-dynamic boundary layers in CFB boilers , 1995 .

[92]  Jam Hans Kuipers,et al.  Hydrodynamic modelling of dense gas-fluidised beds: Comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations , 2002 .

[93]  T. Pugsley,et al.  Study of gas streaming in a deep fluidized bed containing Geldart's Group A particles , 2010 .

[94]  W. Briels,et al.  Discrete particle simulation of a two-dimensional gas-fluidised bed. , 1996 .

[95]  Filip Johnsson,et al.  A comprehensive model of CFB combustion , 2008 .

[96]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[97]  Jamal Chaouki,et al.  Phase Mixing Modeling in Multiphase Reactors Containing Gas Bubble: a Review. , 2004 .

[98]  J. Edelmann,et al.  EXPERIENCES IN USING A STRUCTURED METHOD IN FINDING AND DEFINING NEW INNOVATIONS: THE STRATEGIC OPTIONS APPROACH , 2011 .

[99]  Arthur T. Andrews,et al.  Filtered two‐fluid models for fluidized gas‐particle suspensions , 2008 .

[100]  Gilles Flamant,et al.  Lagrangian approach for simulating the gas-particle flow structure in a circulating fluidized bed riser , 2002 .

[101]  Victor Helix Chipofya,et al.  Training system for conceptual design and evaluation for wastewater treatment , 2010 .

[102]  Ahti Karjalainen Online Ultrasound Measurements of Membrane Compaction , 2010 .

[103]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[104]  Pasi Makkonen,et al.  Artificially intelligent and adaptive methods for prediction and analysis of superheater fireside corrosion in fluidized bed boilers , 1999 .

[105]  Rafael Åman,et al.  Methods and Models for Accelerating Dynamic Simulation of Fluid Power Circuits , 2011 .

[106]  Prabir Basu,et al.  Heat transfer to walls of a circulating fluidized-bed furnace , 1996 .

[107]  Henrik Thunman,et al.  Composition of Volatile Gases and Thermochemical Properties of Wood for Modeling of Fixed or Fluidized Beds , 2001 .

[108]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[109]  Yutaka Tsuji,et al.  Multi-scale modeling of dense phase gas–particle flow , 2007 .

[110]  Afsin Gungor,et al.  One dimensional numerical simulation of small scale CFB combustors , 2009 .

[111]  Dimitri Gidaspow,et al.  Hydrodynamics of fluidization using kinetic theory: an emerging paradigm: 2002 Flour-Daniel lecture , 2004 .

[112]  John Garside,et al.  Velocity-Voidage Relationships for Fluidization and Sedimentation in Solid-Liquid Systems , 1977 .

[113]  R. Jackson,et al.  Gas‐particle flow in a vertical pipe with particle‐particle interactions , 1989 .

[114]  E. Anthony Fluidized bed combustion of alternative solid fuels ; status, successes and problems of the technology , 1995 .

[115]  A. Reynolds,et al.  The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation , 2009 .

[116]  Arthur M. Squires,et al.  THE STORY OF FLUID CATALYTIC CRACKING: THE FIRST “CIRCULATING FLUID BED” , 1986 .

[117]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[118]  Albert Sadovnikov Computational Evaluation of Print Unevenness According to Human Vision , 2010 .

[119]  Guogang Sun,et al.  Solids concentration simulation of different size particles in a cyclone separator , 2008 .

[120]  Leena Kaljunen JOHTAMISOPIT KUNTAORGANISAATIOSSA – diskursiivinen tutkimus sosiaali- ja terveystoimesta 1980-luvulta 2000-luvulle , 2011 .

[121]  J.A.M. Kuipers,et al.  Detailed computational and experimental fluid dynamics of fluid beds , 2003 .

[122]  Rui Xiao,et al.  Multiphase CFD Modeling for a Chemical Looping Combustion Process (Fuel Reactor) , 2008 .

[123]  Henrik Thunman,et al.  Separation of drying and devolatilization during conversion of solid fuels , 2004 .

[124]  Joachim Werther,et al.  Three-dimensional modeling of a circulating fluidized bed gasifier for sewage sludge , 2005 .

[125]  Neelesh A. Patankar,et al.  Lagrangian numerical simulation of particulate flows , 2001 .

[126]  E. Repo,et al.  EDTA- and DTPA-functionalized silica gel and chitosan adsorbents for the removal of heavy metals from aqueous solutions , 2011 .

[127]  Xiaoping Chen,et al.  Lateral solids dispersion coefficient in large-scale fluidized beds , 2010 .

[128]  Joris Koornneef,et al.  Development of fluidized bed combustion—An overview of trends, performance and cost , 2007 .

[129]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[130]  S. Kallio,et al.  Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed , 2009 .

[131]  S. V. Sotirchos,et al.  Effective diffusivity changes during calcination, carbonation, recalcination, and sulfation of limestones , 1994 .

[132]  Tron Solberg,et al.  An experimental and computational study of multiphase flow behavior in a circulating fluidized bed , 2000 .

[133]  Helena Sjögrén Osingonjakopäätökset pienissä osakeyhtiöissä. Empiirinen tutkimus osakeyhtiölain varojenjakosäännösten toteutumisesta , 2010 .

[134]  S. Sundaresan,et al.  The role of meso-scale structures in rapid gas–solid flows , 2001, Journal of Fluid Mechanics.

[135]  M. A. van der Hoef,et al.  COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY , 2005 .

[136]  R. Barker,et al.  The reversibility of the reaction CaCO3 ⇄ CaO+CO2 , 2007 .

[137]  Arthur M. Squires,et al.  The Fast Fluidized Bed , 1976 .

[138]  J. J. Saastamoinen,et al.  Simplified model for calculation of devolatilization in fluidized beds , 2006 .

[139]  Bie Rushan,et al.  A coal combustion model for circulating fluidized bed boilers , 2000 .

[140]  Mika Vanhala,et al.  Impersonal trust within the organization: what, how and why? , 2011 .

[141]  P. Basu Combustion and gasification in fluidized beds , 2006 .

[142]  E. Belin Babcock & Wilcox CFB Boilers—Design and Experience , 2002 .

[143]  Jamal Chaouki,et al.  Simulation of circulating fluidized bed reactors using ASPEN PLUS , 1998 .

[144]  J. C. Ballesteros,et al.  Development and Demonstration of Oxy-fuel CFB Technology , 2012 .

[145]  J. Jenkins,et al.  A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles , 1983, Journal of Fluid Mechanics.

[146]  D. Markelov,et al.  Dynamical and structural properties of dendrimer macromolecules , 2011 .

[147]  Jinghai Li,et al.  Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed , 2008 .

[148]  Hamid Arastoopour,et al.  Numerical simulation and experimental analysis of gas/solid flow systems: 1999 Fluor-Daniel Plenary lecture , 2001 .

[149]  Gemma Grasa,et al.  Circulating fluidized bed combustion in the turbulent regime: modelling of carbon combustion efficiency and sulphur retention , 2001 .

[150]  Antti Tourunen,et al.  Experimental trends of NO in circulating fluidized bed combustion , 2009 .

[151]  Shuyan Wang,et al.  DSMC prediction of granular temperatures of clusters and dispersed particles in a riser , 2009 .

[152]  John R. Grace,et al.  Dynamic modeling for simulation and control of a circulating fluidized‐bed combustor , 1997 .

[153]  Matti Lahti,et al.  Atomic level phenomena on transition metal surfaces , 2011 .

[154]  A. A. Salamov Circulating fluidized bed boilers abroad , 2007 .

[155]  K. Cen,et al.  Effect of characteristic of sorbents on their sulfur capture capability at a fluidized bed condition , 2004 .

[156]  S. Ergun Fluid flow through packed columns , 1952 .

[157]  Prabir Basu,et al.  Gasification in Fluidized Beds — Present Status & Design , 2009 .

[158]  D. Pai,et al.  Fluidised bed combustion technology : the past, present and future , 1999 .

[159]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[160]  Satu Pekkarinen,et al.  Innovations of ageing and societal transition : Dynamics of change of the socio-technical regime of ageing , 2011 .

[161]  A. Lyngfelt,et al.  Reaction between Sulfur Dioxide and Limestone under Periodically Changing Oxidizing and Reducing ConditionsEffect of Cycle Time , 1998 .

[162]  M. Immonen Public-Private Partnerships: Managing organizational change for acquiring value creative capabilities , 2011 .

[163]  P. Gayán,et al.  Radial gas mixing in a fast fluidized bed , 1997 .

[164]  Ville Sihvo,et al.  Insulation System in an Integrated Motor Compressor , 2010 .

[165]  A. P. Baskakov,et al.  Radiative heat transfer in circulating fluidized bed furnaces , 1997 .

[166]  J. C. Abanades,et al.  Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas , 2009 .

[167]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[168]  H. Mickley,et al.  Mechanism of heat transfer to fluidized beds , 1955 .

[169]  D. Zhang,et al.  The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows , 2002 .

[170]  Qinhui Wang,et al.  A mathematical model for a circulating fluidized bed (CFB) boiler , 1999 .

[171]  Shigeru Yonemura,et al.  Cluster Formation and Particle-Induced Instability in Gas-Solid Flows Predicted by the DSMC Method. , 1996 .

[172]  G. Sapy CFB : scaling up to 600 MWe , 1998 .

[173]  D. Snider An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows , 2001 .

[174]  D. Ross Devolatilisation times of coal particles in a fluidised-bed , 2000 .

[175]  Anders Lyngfelt,et al.  A sulphur capture model for circulating fluidized-bed boilers , 1998 .

[176]  Franco Berruti,et al.  A predictive hydrodynamic model for circulating fluidized bed risers , 1996 .

[177]  Paul Kah,et al.  Usability of laser–arc hybrid welding processes in industrial applications , 2011 .

[178]  K. Squires,et al.  Direct numerical simulation of turbulence modulation by particles in isotropic turbulence , 1998, Journal of Fluid Mechanics.

[179]  Joachim Werther,et al.  A 3D Model of Combustion in Large-Scale Circulating Fluidized Bed Boilers , 2004 .

[180]  John R. Grace,et al.  Further measurements of flow dynamics in a high-density circulating fluidized bed riser , 2000 .

[181]  C. Wen Mechanics of Fluidization , 1966 .

[182]  Filip Johnsson,et al.  Vertical distribution of solids in a CFB furnace , 1995 .

[183]  Wojciech Nowak,et al.  Fuel conversion from oxy-fuel combustion in a circulating fluidized bed , 2006 .

[184]  J. Kuipers,et al.  Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres , 2007 .

[185]  Joachim Werther,et al.  CFD-simulation of a circulating fluidized bed riser , 2009 .

[186]  Animesh Dutta,et al.  An experimental investigation into the heat transfer on wing walls in a circulating fluidized bed boiler , 2002 .

[187]  Lon-Mihal Sculy-Logotheti,et al.  Baima: China's first large-scale CFB , 2004 .

[188]  Don W. Green,et al.  Perry's chemical engineers' handbook. 7th ed. , 1997 .

[189]  P. Basu,et al.  A model for heat transfer in circulating fluidized beds , 1986 .

[190]  Goodarz Ahmadi,et al.  A thermodynamical formulation for dispersed multiphase turbulent flows. II: Simple shear flows for dense mixtures , 1990 .

[191]  Gilles Flamant,et al.  Modelling of axial and radial solid segregation in a CFB boiler , 2004 .

[192]  Filip Johnsson,et al.  Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds , 2006 .

[193]  Wojciech Nowak,et al.  Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler: Part 1. The mathematical model of fuel combustion in oxygen-enriched CFB environment , 2010 .

[194]  Maarit Virta,et al.  Knowledge Sharing between Generations in an Organisation - Retention of the Old or Building the New? , 2011 .

[195]  Filtered gas–solid momentum transfer models and their application to 3D steady-state riser simulations , 2007 .

[196]  Ian H. Rowlands,et al.  The European directive on renewable electricity: conflicts and compromises , 2005 .

[197]  Christine M. Hrenya,et al.  The influence of binary drag laws on simulations of species segregation in gas-fluidized beds , 2008 .

[198]  Heidi Olander,et al.  Formal and informal mechanisms for knowledge protection and sharing , 2011 .

[199]  Rajamani Krishna,et al.  Comparative analysis of CFD models of dense gas–solid systems , 2001 .

[200]  E. Ranzi,et al.  A general mathematical model of solid fuels pyrolysis , 2005 .

[201]  Erkki Karppanen,et al.  Advanced control of an industrial circulating fluidized bed boiler using fuzzy logic , 2000 .

[202]  E. J. Anthony,et al.  Determination of intrinsic rate constants of the CaO–CO2 reaction , 2008 .

[203]  Shiqing Cheng,et al.  Effect of characteristics of calcium-based sorbents on the sulfation kinetics , 2005 .

[204]  A. Ladd,et al.  Moderate-Reynolds-number flows in ordered and random arrays of spheres , 2001, Journal of Fluid Mechanics.

[205]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[206]  P. Gayán,et al.  Comparison of mechanistic models for the sulfation reaction in a broad range of particle sizes of sorbents , 1996 .

[207]  Sankaran Sundaresan,et al.  Coarse-Grid Simulation of Gas-Particle Flows in Vertical Risers , 2005 .

[208]  Ng Niels Deen,et al.  Review of discrete particle modeling of fluidized beds , 2007 .

[209]  S. Ogawa,et al.  On the equations of fully fluidized granular materials , 1980 .

[210]  Kefa Cen,et al.  Modeling sulfur retention in circulating fluidized bed combustors , 1995 .

[211]  J. J. Saastamoinen,et al.  Particle-Size Optimization for SO2 Capture by Limestone in a Circulating Fluidized Bed , 2007 .

[212]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[213]  Virpi Junttila,et al.  Automated, adaptive methods for forest inventory , 2011 .

[214]  Robert Peltier Nova-Scotia Power's Point Aconi plant overcomes CFB design problems to become rock of reliability , 2006 .

[216]  Jouni Pakarinen,et al.  Recovery and refining of manganese as by-product from hydrometallurgical processes , 2011 .

[217]  M. Kruse,et al.  2D gas and solids flow prediction in circulating fluidized beds based on suction probe and pressure profile measurements , 1995 .

[218]  J. R. Kim,et al.  Biomass gasification in a circulating fluidized bed , 2004 .

[219]  Mika Lohtander On the development of object functions and restrictions for shapes made with a turret punch press , 2010 .

[220]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[221]  Ken Okazaki,et al.  Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion , 2000 .

[222]  Joachim Werther,et al.  The role of mixing in the performance of CFB reactors , 1999 .

[223]  Ari Kettunen,et al.  Towards New Milestones in CFB Boiler Technology - CFB 800 MWe / New 460 MWe Super-Critical Plant with CFB Boiler in Lagisza - First Experience Update , 2010 .

[224]  J. Werther,et al.  Mixing and reaction in the circulating fluidized bed – A three-dimensional combustor model , 1999 .

[225]  P. J. O'rourke,et al.  The multiphase particle-in-cell (MP-PIC) method for dense particulate flows , 1996 .

[226]  Timo Hyppänen,et al.  A Three-Dimensional Model Frame for Modelling Combustion and Gasification in Circulating Fluidized Bed Furnaces , 2011 .