Mechanical Procedures and Mathematical Experience
暂无分享,去创建一个
[1] Alan M. Turing,et al. Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.
[2] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül , 1915 .
[3] Stephen C. Kleene,et al. Turing's analysis of computability, and major applications of it , 1988 .
[4] Wilfried Sieg. Foundations for Analysis and Proof Theory , 1984 .
[5] László Kalmár. Über ein Problem, betreffend die Definition des Begriffes der allgemein-rekursiven Funktion , 1955 .
[6] P. Odifreddi. The theory of functions and sets of natural numbers , 1989 .
[7] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[8] P. Odifreddi. Classical recursion theory , 1989 .
[9] K. Schutte. Review: Paul Bernays, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie , 1978 .
[10] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[11] Martin D. Davis,et al. Why Gödel Didn't Have Church's Thesis , 1982, Inf. Control..
[12] Kurt Godel. Remarks before the Princeton Bicentennial Conference on problems in mathematics , 1990 .
[13] Wilfried Sieg. Review: Stephen G. Simpson, Friedman's Research on Subsystems of Second Order Arithmetic , 1990 .
[14] Hans Hermes,et al. Introduction to mathematical logic , 1973, Universitext.
[15] H. Weber,et al. Leopold Kronecker , 1893 .
[16] John R. Searle,et al. Is the Brain a Digital Computer , 1990 .
[17] Paul Bernays. Über Hilberts Gedanken zur Grundlegung der Arithmetik. , 1922 .
[18] Kurt Gödel,et al. On undecidable propositions of formal mathematical systems , 1934 .
[19] Martin D. Davis,et al. Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.
[20] Robin Gandy,et al. Church's Thesis and Principles for Mechanisms , 1980 .
[21] Emil L. Post. Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.
[22] D. Hilbert. Über das Unendliche , 1926 .
[23] J. Barkley Rosser,et al. Highlights of the History of the Lambda-Calculus , 1984, IEEE Ann. Hist. Comput..
[24] J. Heijenoort. From Frege To Gödel , 1967 .
[25] Stephen Cole Kleene,et al. Origins of recursive function theory , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[26] Peter Aczel,et al. An Introduction to Inductive Definitions , 1977 .
[27] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems , 1944 .
[28] Nicholas Bourbaki,et al. The Architecture of Mathematics , 1950 .
[29] A. Church. An Unsolvable Problem of Elementary Number Theory , 1936 .
[30] Stephen Cole Kleene,et al. On notation for ordinal numbers , 1938, Journal of Symbolic Logic.
[31] Guglielmo Tamburrini,et al. Reasoning and computation in leibniz , 1991 .
[32] A. Church,et al. A Proof of Freedom from Contradiction. , 1935, Proceedings of the National Academy of Sciences of the United States of America.
[33] Alonzo Church,et al. The Richard Paradox , 1934 .
[34] S. Kleene. General recursive functions of natural numbers , 1936 .
[35] Gottlob Frege,et al. Collected Papers on Mathematics, Logic, and Philosophy , 1991 .
[36] S. Feferman. Turing in the land of O(z) , 1988 .
[37] Elliott Mendelson,et al. Second Thoughts about Church's Thesis and Mathematical Proofs , 1990 .
[38] Sybille Krämer. Symbolische Maschinen - die Idee der Formalisierung in geschichtlichem Abriß , 1988 .
[39] Alonzo Church,et al. A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[40] J. Lucas. Minds, Machines and Gödel , 1961, Philosophy.
[41] Christopher S. Hill,et al. Mechanism, Mentalism and Metamathematics , 1980 .
[42] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[43] E. Stamm. Beitrag zur algebra der Logik , 1911 .
[44] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[45] David Hilbert,et al. Über die Grundlagen der Logik und der Arithmetik , 1905 .
[46] Stewart Shapiro,et al. Remarks on the development of computability , 1983 .
[47] Stuart G. Shanker,et al. Wittgenstein versus Turing on the nature of Church's thesis , 1987, Notre Dame J. Formal Log..
[48] W. Ackermann,et al. Grundzüge der theoretischen Logik , 1928 .
[49] Georg Kreisel,et al. A survey of proof theory , 1968, Journal of Symbolic Logic.
[50] R. Dedekind,et al. Was sind und was sollen die Zahlen , 1961 .
[51] Rolf Herken,et al. The Universal Turing Machine: A Half-Century Survey , 1992 .
[52] Paul Bernays,et al. Abhandlungen zur Philosophie der Mathematik , 1977 .