Bounding principles for elastic-plastic-creeping solids loaded below and above the shakedown limit

SommarioSi considerano solidi elasto-plasto-viscosi (senza incrudimento) sottoposti a carichi variabili e, nell'ipotesi di spostamenti infinitesimi, viene formulato un principio di maggiorazione valevole sia per carichi al di sotto, che al di sopra del limite di adattamento (shakedown). Mediante la scelta di taluni parametri liberi, il suddetto principio dà luogo a molteplici casi particolari di valore pratico, alcuni dei quali ripropongono risultati già noti per materiali viscosi e non, altri costituiscono risultati nuovi o generalizzazioni di risultati noti. L'argomento sarà ripreso in un successivo lavoro [35].SummarySolids of elastic-perfectly plastic creeping material subjected to variable loads are considered within the infinitesimal displacement framework and a bounding principle is presented which holds below and above the shakedown limit. Through the choice of some free parameters, this principle generates a number of deformation bounds with practical meanings, some of wich coincide with known results for creeping and noncreeping material, while others constitute new results or generalizations of known results. The topic will be further studied in a subsequent paper [35].

[1]  Alan R.S. Ponter,et al.  An Upper Bound on the Small Displacements of Elastic, Perfectly Plastic Structures , 1972 .

[2]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[3]  F. A. Leckie,et al.  The Development of High Temperature Design Methods Based on Reference Stresses and Bounding Theorems , 1979 .

[4]  R. Ainsworth Approximate solutions for creeping structures subjected to periodic loading , 1976 .

[5]  F. A. Leckie,et al.  Deformation Bounds for Bodies in a State of Creep , 1967 .

[6]  A. Ponter,et al.  On the Stress Analysis of Creeping Structures Subject to Variable Loading , 1973 .

[7]  R. Ainsworth A note on bounding solutions for creeping structures subjected to load variations above the shakedown limit , 1979 .

[8]  A. Ponter,et al.  Deformation, Displacement, and Work Bounds for Structures in a State of Creep and Subject to Variable Loading , 1972 .

[9]  A. Ponter,et al.  On the Relationship Between Plastic Shakedown and the Repeated Loading of Creeping Structures , 1971 .

[10]  F. A. Leckie,et al.  Review of bounding techniques in shakedown and ratcheting at elevated temperature , 1974 .

[11]  David R Hayhurst,et al.  Creep in Structures , 1981 .

[12]  C. O. Frederick,et al.  Convergent internal stresses and steady cyclic states of stress , 1966 .

[13]  R. Ainsworth Application of bounds for creeping structures subjected to load variations above the shakedown limit , 1977 .

[14]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .

[15]  Par J. Zarka Generalisation de la theorie du potentiel plastique multiple en viscoplasticite , 1972 .

[16]  Castrenze Polizzotto,et al.  A unified approach to quasi-static shakedown problems for elastic-plastic solids with piecewise linear yield surface , 1978 .

[17]  P. Perzyna Memory effects and internal changes of a material , 1971 .

[18]  Castrenze Polizzotto A local bounding principle for dissipation energy in shakedown of elastic-perfectly plastic solids , 1980 .

[19]  J. B. Martin A Note on the Determination of an Upper Bound on Displacement Rates for Steady Creep Problems , 1966 .

[20]  F. A. Leckie,et al.  Deformation Bounds for Bodies Which Creep in the Plastic Range , 1970 .

[21]  C. Polizzotto Upper bounds on plastic strains for elastic-perfectly plastic solids subjected to variable loads☆ , 1979 .