A holistic approach to Network-on-Chip synthesis

Application specific Network-on-Chip (NoC) architectures have emerged as a leading technology to address the communication woes of multi-processor System-on-Chip architectures. Synthesis approaches for custom NoC must address several requirements including cumulative bandwidth and transaction level (TL) communication requirements, multiple application use-cases, deadlock avoidance, and router port bandwidth and arity constraints. In this paper we present a holistic algorithm for NoC synthesis which is able to address all these requirements together in an integrated manner. The approach is able to generate designs that consume minimum dynamic power consumption, and at most twice the number of routers (and leakage power) as an optimal solution. In terms of performance the technique is able to generate NoC designs with very low average communication latencies (verified by actual simulations) and equally low standard deviation (jitter) while utilizing simple best effort routers. We evaluated the effectiveness and quality of the proposed technique by comparisons with two existing approaches. Extensive experimental results are presented for synthetic/realistic multiple use case applications, cumulative/transaction traffic requirements, increasing application bandwidth requirements, and different port arity constraints.

[1]  Srinivasan Murali,et al.  Mapping and configuration methods for multi-use-case networks on chips , 2006, Asia and South Pacific Conference on Design Automation, 2006..

[2]  Kees G. W. Goossens,et al.  A unified approach to constrained mapping and routing on network-on-chip architectures , 2005, 2005 Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'05).

[3]  Krishnan Srinivasan,et al.  Automated Techniques for Synthesis of Application-Specific Network-on-Chip Architectures , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Krishnan Srinivasan,et al.  Linear programming based techniques for synthesis of network-on-chip architectures , 2006, IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings..

[5]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[6]  Radu Marculescu,et al.  Application-specific network-on-chip architecture customization via long-range link insertion , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[7]  Luca Benini Application Specific NoC Design , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[8]  Srinivasan Murali,et al.  A Methodology for Mapping Multiple Use-Cases onto Networks on Chips , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[9]  Luca Benini,et al.  Designing Application-Specific Networks on Chips with Floorplan Information , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[11]  William J. Dally,et al.  Principles and Practices of Interconnection Networks , 2004 .

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .