Modeling of epidemic spreading on multilayer networks in uncertain environments

[1]  M. Jiang,et al.  Coherence resonance induced by rewiring in complex networks. , 2009, Chaos.

[2]  Jürgen Kurths,et al.  Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. , 2002, Physical review letters.

[3]  Y. Lai,et al.  Coherence resonance in coupled chaotic oscillators. , 2001, Physical review letters.

[4]  Wei Li,et al.  Modeling of epidemic spreading with white Gaussian noise , 2011, Chinese science bulletin = Kexue tongbao.

[5]  I. Schwartz,et al.  Enhancement of large fluctuations to extinction in adaptive networks. , 2017, Physical review. E.

[6]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[7]  Yoji Kawamura,et al.  Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators. , 2007, Physical review letters.

[8]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[9]  Qing Nie,et al.  A moment-convergence method for stochastic analysis of biochemical reaction networks. , 2016, The Journal of chemical physics.

[10]  Shlomo Havlin,et al.  Nontrivial resource requirement in the early stage for containment of epidemics. , 2019, Physical review. E.

[11]  M. M. Telo da Gama,et al.  Stochastic fluctuations in epidemics on networks , 2007, Journal of The Royal Society Interface.

[12]  Ira B Schwartz,et al.  Epidemic extinction paths in complex networks. , 2017, Physical review. E.

[13]  Chinwendu Enyioha,et al.  Distributed resource allocation for control of spreading processes , 2015, 2015 European Control Conference (ECC).

[14]  Ying-Cheng Lai,et al.  Scaling of noisy fluctuations in complex networks and applications to network prediction. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[16]  Ira B Schwartz,et al.  Enhanced vaccine control of epidemics in adaptive networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[18]  Yi Wang,et al.  Coherence Resonance in an Epidemic Model with Noise , 2012 .

[19]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[20]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[21]  I. Schwartz,et al.  Rare-event extinction on stochastic networks , 2014, 1411.0017.

[22]  Luc Berthouze,et al.  Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis , 2014, Journal of mathematical biology.

[23]  Janusz A. Holyst,et al.  Noise enhances information transfer in hierarchical networks , 2013, Scientific Reports.

[24]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[26]  Pawel Hitczenko,et al.  Bursting Oscillations Induced by Small Noise , 2007, SIAM J. Appl. Math..

[27]  Jiajun Zhang,et al.  Noise-induced switches in network systems of the genetic toggle switch , 2007, BMC Systems Biology.

[28]  Federico Morán,et al.  Noise-controlled self-replicating patterns. , 2003, Physical review letters.

[29]  T. Zhou,et al.  Detecting critical transitions in the case of moderate or strong noise by binomial moments. , 2018, Physical review. E.

[30]  T. Zhou,et al.  Linear approximations of global behaviors in nonlinear systems with moderate or strong noise. , 2018, The Journal of chemical physics.

[32]  H. Risken Fokker-Planck Equation , 1984 .

[33]  Basil S. Bayati Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model , 2016, Physical review. E.

[34]  Thilo Gross,et al.  Epidemic dynamics on an adaptive network. , 2005, Physical review letters.

[35]  Jian Jiang,et al.  Resource control of epidemic spreading through a multilayer network , 2018, Scientific Reports.

[36]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[37]  H. J. Herrmann,et al.  Disease-induced resource constraints can trigger explosive epidemics , 2014, Scientific Reports.

[38]  Tianshou Zhou,et al.  The influence of time delay on epidemic spreading under limited resources , 2018, Physica A: Statistical Mechanics and its Applications.

[39]  Li,et al.  Bistable kinetic model driven by correlated noises: Steady-state analysis. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  R. Pastor-Satorras,et al.  Steady-state dynamics of the forest fire model on complex networks , 2009, 0911.0569.

[41]  Victor M. Preciado,et al.  Optimal Containment of Epidemics in Temporal and Adaptive Networks , 2017 .

[42]  Ming Tang,et al.  Suppressing epidemic spreading in multiplex networks with social-support , 2017, 1708.02507.

[43]  Ira B Schwartz,et al.  Fluctuating epidemics on adaptive networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Jifan Shi,et al.  Towards a critical transition theory under different temporal scales and noise strengths. , 2016, Physical review. E.