Neural networks: New tools for modelling and data analysis in science

To provide a primer for the study of scientific applications of connectionist systems, the dynamical, statistical, and computational properties of the most prominent artificial neural-network models are reviewed. The basic ingredients of neural modeling are introduced, including architecture, neuronal response, dynamical equations, coding schemes, and learning rules. Perceptron systems and recurrent attractor networks are highlighted. Applications of recurrent nets as content-addressable memories and for the solution of combinatorial optimization problems are described. The backpropagation algorithm for supervised training of multilayer perceptrons is developed, and the utility of these systems in classification and function approximation tasks is discussed. Some instructive scientific applications in astronomy, physical chemistry, nuclear physics, protein structure, and experimental high-energy physics are examined in detail. A special effort is made to illuminate the nature of neural-network models as automated devices that learn the statistics of their data environment and perform statistical inference at a level that may approach the Bayesian ideal. The review closes with a critical assessment of the strengths and weaknesses of neural networks as aids to modeling and data analysis in science.

[1]  Transition to Chaos in Asymmetric Neural Networks , 1988 .

[2]  Geoffrey E. Hinton,et al.  Learning distributed representations of concepts. , 1989 .

[3]  J. Zupan,et al.  REPRESENTATION OF MOLECULAR ELECTROSTATIC POTENTIALS BY TOPOLOGICAL FEATURE MAPS , 1994 .

[4]  J. Nadal,et al.  Learning in feedforward layered networks: the tiling algorithm , 1989 .

[5]  Peter Dayan,et al.  Combining Probabilistic Population Codes , 1997, IJCAI.

[6]  Jack D. Cowan,et al.  Discussion: McCulloch-Pitts and related neural nets from 1943 to 1989 , 1990 .

[7]  P Stolorz,et al.  Predicting protein secondary structure using neural net and statistical methods. , 1992, Journal of molecular biology.

[8]  Ronald J. Williams,et al.  Experimental Analysis of the Real-time Recurrent Learning Algorithm , 1989 .

[9]  L. Personnaz,et al.  Collective computational properties of neural networks: New learning mechanisms. , 1986, Physical review. A, General physics.

[10]  H A Scheraga,et al.  Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. III. Probable and average conformations of enkephalin , 1987, Biopolymers.

[11]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[12]  B. Rost,et al.  Improved prediction of protein secondary structure by use of sequence profiles and neural networks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John W. Clark,et al.  Chaos in neural systems , 1986 .

[14]  Søren Brunak,et al.  Protein structure by distance analysis , 1994 .

[15]  Rajiv K. Kalia,et al.  Condensed Matter Theories: Volume 2 , 1988 .

[16]  John W. Clark,et al.  Artificial Neural Networks that Learn Many-Body Physics , 1991 .

[17]  Robert Dale,et al.  Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society , 1991 .

[18]  E. Gardner The space of interactions in neural network models , 1988 .

[19]  J S Denker,et al.  Neural network models of learning and adaptation , 1986 .

[20]  Richard Lippmann,et al.  Neural Net and Traditional Classifiers , 1987, NIPS.

[21]  Thorsteinn S. Rögnvaldsson,et al.  JETNET 3.0—A versatile artificial neural network package , 1994 .

[22]  P. Wolynes,et al.  Spin glasses and the statistical mechanics of protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  James Roger P. Angel,et al.  First Results of an On-Line Adaptive Optics System with Atmospheric Wavefront Sensing by an Artificial Neural Network , 1992 .

[24]  R. Malinow,et al.  Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation , 1986, Nature.

[25]  John W. Clark,et al.  Neural networks that learn to predict probabilities: Global models of nuclear stability and decay , 1995, Neural Networks.

[26]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[27]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[28]  David G. Sandler,et al.  Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes , 1994 .

[29]  J.A. Anderson Two models for memory organization using interacting traces , 1970 .

[30]  L. B. Lmeida Backpropagation in perceptrons with feedback , 1988 .

[31]  P. Y. Chou,et al.  Empirical predictions of protein conformation. , 1978, Annual review of biochemistry.

[32]  P. Wolynes,et al.  Toward Protein Tertiary Structure Recognition by Means of Associative Memory Hamiltonians , 1989, Science.

[33]  Lyle H. Ungar,et al.  A comparison of two nonparametric estimation schemes: MARS and neural networks , 1993 .

[34]  P. Peretto,et al.  On learning rules and memory storage abilities of asymmetrical neural networks , 1988 .

[35]  Peter G. Wolynes,et al.  Classification and Prediction of Protein Side-Chains by Neural Network Techniques , 1992, Int. J. Neural Syst..

[36]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[37]  J. L. van Hemmen,et al.  Spin-glass models of a neural network. , 1986 .

[38]  J. Angel,et al.  Adaptive optics for array telescopes using neural-network techniques , 1990, Nature.

[39]  P. Peretto,et al.  Collective Properties of Neural Networks , 1986 .

[40]  Esther Levin,et al.  A statistical approach to learning and generalization in layered neural networks , 1989, Proc. IEEE.

[41]  John W. Clark,et al.  Learning and prediction of nuclear stability by neural networks , 1992 .

[42]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[43]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[44]  E. Caianiello Outline of a theory of thought-processes and thinking machines. , 1961, Journal of theoretical biology.

[45]  Bruce Denby,et al.  Neural networks and cellular automata in experimental high energy physics , 1988 .

[46]  Peterson Classification of Cm II and Pu I energy levels using counterpropagation neural networks. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[47]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[48]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[49]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[50]  E. W. Kairiss,et al.  Long-term synaptic potentiation. , 1988, Science.

[51]  Sompolinsky,et al.  Statistical mechanics of learning from examples. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[52]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[53]  S Suhai,et al.  Prediction of hypervariable CDR-H3 loop structures in antibodies. , 1995, Protein engineering.

[54]  E. Kandel,et al.  The biological basis of learning and individuality. , 1992, Scientific American.

[55]  S. Knudsen,et al.  Cleaning up gene databases , 1990, Nature.

[56]  Benny Lautrup,et al.  A novel approach to prediction of the 3‐dimensional structures of protein backbones by neural networks , 1990, NIPS.

[57]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[58]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  Peter Möller,et al.  Global nuclear-structure calculations , 1990 .

[60]  Bruce W. Suter,et al.  The multilayer perceptron as an approximation to a Bayes optimal discriminant function , 1990, IEEE Trans. Neural Networks.

[61]  Peter G. Wolynes,et al.  Molecular dynamics of associative memory hamiltonians for protein tertiary structure recognition , 1990 .

[62]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[63]  K. Becks,et al.  B-quark tagging using neural networks and multivariate statistical methods A comparison of both techniques☆ , 1993 .

[64]  Thorsteinn S. Rögnvaldsson,et al.  Self-organizing networks for extracting jet features , 1991 .

[65]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[66]  Nils J. Nilsson,et al.  Learning Machines: Foundations of Trainable Pattern-Classifying Systems , 1965 .

[67]  J W Clark,et al.  Experiments in artificial psychology: conditioning of asynchronous neural network models. , 1990, Mathematical biosciences.

[68]  Eric A. Wan,et al.  Neural network classification: a Bayesian interpretation , 1990, IEEE Trans. Neural Networks.

[69]  Peterson,et al.  Finding gluon jets with a neural trigger. , 1990, Physical review letters.

[70]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[71]  Murray Smith,et al.  Neural Networks for Statistical Modeling , 1993 .

[72]  Steven D. Brown,et al.  Neural network models of potential energy surfaces , 1995 .

[73]  J. Gasteiger,et al.  Comparison of structurally different allosteric modulators of muscarinic receptors by self-organizing neural networks. , 1996, Journal of molecular graphics.

[74]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[75]  S. Brunak,et al.  Analysis of the secondary structure of the human immunodeficiency virus (HIV) proteins p17, gp120, and gp41 by computer modeling based on neural network methods. , 1990, Journal of acquired immune deficiency syndromes.

[76]  Carsten Peterson,et al.  Pattern recognition in high energy physics with artificial neural networks - JETNET 2.0 , 1992 .

[77]  W. Singer,et al.  The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. , 1981, The Journal of physiology.

[78]  R. Q. Fugate,et al.  Use of a neural network to control an adaptive optics system for an astronomical telescope , 1991, Nature.

[79]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[80]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .

[81]  Thomas B. Blank,et al.  Adaptive, global, extended Kalman filters for training feedforward neural networks , 1994 .

[82]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[83]  S. Brunak,et al.  Protein secondary structure and homology by neural networks The α‐helices in rhodopsin , 1988 .

[84]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[85]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[86]  Joseph W. Goodman,et al.  On the power of neural networks for solving hard problems , 1990, J. Complex..

[87]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[88]  Robert Hecht-Nielsen,et al.  Applications of counterpropagation networks , 1988, Neural Networks.

[89]  J. U. Thomsen,et al.  Pattern recognition of the 1H NMR spectra of sugar alditols using a neural network , 1989 .

[90]  Fernando J. Pineda,et al.  Recurrent Backpropagation and the Dynamical Approach to Adaptive Neural Computation , 1989, Neural Computation.

[91]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[92]  Włodzisław Duch,et al.  Neural networks as tools to solve problems in physics and chemistry , 1994 .

[93]  Wolynes,et al.  Molecular theory of associative memory Hamiltonian models of protein folding. , 1990, Physical review letters.

[94]  L. B. Almeida A learning rule for asynchronous perceptrons with feedback in a combinatorial environment , 1990 .

[95]  John W. Clark,et al.  A modified backpropagation algorithm for training neural networks on data with error bars , 1995 .

[96]  Jerome H. Friedman,et al.  An Overview of Predictive Learning and Function Approximation , 1994 .

[97]  Chris Sander,et al.  Jury returns on structure prediction , 1992, Nature.

[98]  A. Polls,et al.  Microscopic Quantum Many-Body Theories and Their Applications: Proceedings of a European Summer School, Held at Valencia, Spain, 8-19 September 1997 , 2013 .

[99]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[100]  Charles H. Anderson,et al.  A PDF model of populations of Purkinje cells: Non-linear interactions and high variability , 1999, Neurocomputing.

[101]  B. Rost,et al.  Combining evolutionary information and neural networks to predict protein secondary structure , 1994, Proteins.

[102]  D. Alkon Calcium-mediated reduction of ionic currents: a biophysical memory trace. , 1984, Science.

[103]  R Langridge,et al.  Improvements in protein secondary structure prediction by an enhanced neural network. , 1990, Journal of molecular biology.

[104]  E M Harth,et al.  Dynamics of neural structures. , 1970, Journal of theoretical biology.

[105]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[106]  S Brunak,et al.  Protein structures from distance inequalities. , 1993, Journal of molecular biology.

[107]  Gèunther Palm,et al.  Neural Assemblies: An Alternative Approach to Artificial Intelligence , 1982 .

[108]  Geoffrey E. Hinton,et al.  Experiments on Learning by Back Propagation. , 1986 .

[109]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[110]  A Darvill,et al.  Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks , 1991, Science.

[111]  Sompolinsky,et al.  Learning from examples in large neural networks. , 1990, Physical review letters.

[112]  J W Clark,et al.  Neural network modelling , 1991, Physics in medicine and biology.

[113]  Lawrence D. Jackel,et al.  Large Automatic Learning, Rule Extraction, and Generalization , 1987, Complex Syst..

[114]  Peterson Classification of Cm I energy levels using counterpropagation neural networks. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[115]  F. Richards,et al.  The protein folding problem. , 1991, Scientific American.

[116]  Rodney M. J. Cotterill Computer simulation in brain science: Contents , 1988 .

[117]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[118]  David Horn,et al.  NEURAL COMPUTATION METHODS AND APPLICATIONS : SUMMARY TALK OF THE AI SESSION , 1997 .

[119]  Terrence J. Sejnowski,et al.  Bayesian Unsupervised Learning of Higher Order Structure , 1996, NIPS.

[120]  J. Friedman Multivariate adaptive regression splines , 1990 .

[121]  David G. Sandler,et al.  Optimization and Performance of Adaptive Optics for Imaging Extrasolar Planets , 1995 .

[122]  Anders Krogh,et al.  Dynamics of Generalization in Linear Perceptrons , 1990, NIPS.

[123]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[124]  Charles H. Anderson,et al.  BASIC ELEMENTS OF BIOLOGICAL COMPUTATIONAL SYSTEMS , 1994 .

[125]  W. A. Clark,et al.  Simulation of self-organizing systems by digital computer , 1954, Trans. IRE Prof. Group Inf. Theory.

[126]  Y. C. Lee,et al.  Evolution, Learning And Cognition , 1988 .

[127]  James D. Keeler,et al.  Comparison between sparsely distributed memory and Hopfield-type neural network models , 1986 .

[128]  A. Yuille,et al.  Track finding with deformable templates — the elastic arms approach , 1992 .

[129]  Bressloff Stochastic dynamics of time-summating binary neural networks. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[130]  Pineda,et al.  Generalization of back-propagation to recurrent neural networks. , 1987, Physical review letters.

[131]  Berndt Müller,et al.  Neural networks: an introduction , 1990 .

[132]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[133]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[134]  D. J. Wallace,et al.  Dynamics and statistical mechanics of the Hopfield model , 1987 .

[135]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[136]  Initial events of protein folding from an information-processing viewpoint. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[137]  Alexander H. Waibel,et al.  A novel objective function for improved phoneme recognition using time delay neural networks , 1990, International 1989 Joint Conference on Neural Networks.

[138]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[139]  H. Klapdor-kleingrothaus,et al.  Second-generation microscopic predictions of beta-decay half-lives of neutron-rich nuclei , 1990 .

[140]  John W. Clark,et al.  Statistical mechanics of neural networks , 1988 .

[141]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[142]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[143]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[144]  Clark,et al.  Relative entropy and learning rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[145]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[146]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[147]  S. Knudsen,et al.  Neural network detects errors in the assignment of mRNA splice sites. , 1990, Nucleic acids research.

[148]  D. Bounds New optimization methods from physics and biology , 1987, Nature.

[149]  John W. Clark,et al.  Collective Computation of Many-Body Properties by Neural Networks , 1992 .

[150]  John W. Clark,et al.  Update on the crisis in nuclear-matter theory: A summary of the trieste conference , 1979 .

[151]  Armando Freitas da Rocha,et al.  Neural Nets , 1992, Lecture Notes in Computer Science.

[152]  David E. Rumelhart,et al.  MSnet: A Neural Network which Classifies Mass Spectra , 1990 .

[153]  Haim Sompolinsky,et al.  STATISTICAL MECHANICS OF NEURAL NETWORKS , 1988 .

[154]  P. Yepes,et al.  Higgs search and neural-net analysis , 1993 .

[155]  Bobby G. Sumpter,et al.  A neural network approach to the study of internal energy flow in molecular systems , 1992 .

[156]  Information Theory of a Multilayer Neural Network with Discrete Weights , 1992 .

[157]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[158]  Todd K. Barrett,et al.  Shearing interferometry for laser-guide-star atmospheric correction at large D/r 0 , 1994 .

[159]  Rebecca C. Wade,et al.  Prediction of water binding sites on proteins by neural networks , 1992 .

[160]  J. R. Schrieffer,et al.  Theory of superconductivity , 1957 .

[161]  C Sander,et al.  Progress in protein structure prediction? , 1993, Trends in biochemical sciences.

[162]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[163]  Greiner,et al.  Neural networks for impact parameter determination. , 1996, Physical review. C, Nuclear physics.

[164]  Bruce Denby,et al.  Spatial pattern recognition in a high energy particle detector using a neural network algorithm , 1990 .

[165]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[166]  David B. Parker,et al.  A comparison of algorithms for neuron-like cells , 1987 .

[167]  D. Amit,et al.  Statistical mechanics of neural networks near saturation , 1987 .

[168]  Thorsteinn S. Rögnvaldsson,et al.  Using neural networks to identify jets , 1991 .

[169]  Marshall C. Yovits,et al.  Self-organizing systems 1962 , 1964 .

[170]  John W. Clark,et al.  Scientific Applications of Neural Nets , 1999 .

[171]  D. H. Paul The physiology of nerve cells , 1975 .

[172]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[173]  Johann Gasteiger,et al.  The Coding of the Three-Dimensional Structure of Molecules by Molecular Transforms and Its Application to Structure-Spectra Correlations and Studies of Biological Activity , 1996, J. Chem. Inf. Comput. Sci..

[174]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[175]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[176]  J. W. Clark,et al.  Brain without mind: Computer simulation of neural networks with modifiable neuronal interactions , 1985 .

[177]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[178]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[179]  B. Cragg,et al.  The organisation of neurones: a co-operative analogy. , 1954, Electroencephalography and clinical neurophysiology.

[180]  Jerome H. Friedman,et al.  Rejoinder: Multivariate Adaptive Regression Splines , 1991 .

[181]  S. Knudsen,et al.  Prediction of human mRNA donor and acceptor sites from the DNA sequence. , 1991, Journal of molecular biology.

[182]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[183]  D. Stein,et al.  A model of protein conformational substates. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Kanter,et al.  Statistical mechanics of a multilayered neural network. , 1990, Physical review letters.

[185]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[186]  T. Watkin,et al.  THE STATISTICAL-MECHANICS OF LEARNING A RULE , 1993 .

[187]  K. E. Kürten Critical phenomena in model neural networks , 1988 .

[188]  Jack David Cowan,et al.  A mathematical theory of central nervous activity , 1967 .

[189]  A. De Angelis,et al.  Tagging the decays of the Z0 boson into b quark pairs with a neural network classifier , 1991 .

[190]  Leon N. Cooper,et al.  A possible organization of animal memory and learning , 1973 .

[191]  Demetri Psaltis,et al.  INFORMATION STORAGE IN FULLY CONNECTED NETWORKS , 1989 .

[192]  Eytan Domany Neural networks: A biased overview , 1988 .

[193]  Gérard Weisbuch,et al.  Scaling laws for the attractors of Hopfield networks , 1985 .

[194]  Sompolinsky,et al.  Information storage in neural networks with low levels of activity. , 1987, Physical review. A, General physics.

[195]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[196]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[197]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[198]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[199]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[200]  Wray L. Buntine,et al.  Bayesian Back-Propagation , 1991, Complex Syst..

[201]  G. Breit,et al.  Nuclear Structure, Vol. 1 , 1970 .

[202]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[203]  John J. Hopfield,et al.  A protein structure predictor based on an energy model with learned parameters , 1990 .

[204]  Carsten Peterson,et al.  A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..

[205]  M. Gyulassy,et al.  Elastic tracking and neural network algorithms for complex pattern recognition , 1991 .

[206]  W. Babbage,et al.  The use of neural networks in γ-π0 discrimination , 1993 .

[207]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[208]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[209]  K. E. Kürten Dynamical phase transitions in short-ranged and long-ranged neural network models , 1989 .

[210]  Geoffrey E. Hinton,et al.  Learning Population Codes by Minimizing Description Length , 1993, Neural Computation.

[211]  J W Clark,et al.  Higher-order probabilistic perceptrons as Bayesian inference engines. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[212]  Dennis Sanger,et al.  Contribution analysis: a technique for assigning responsibilities to hidden units in connectionist networks , 1991 .

[213]  M. Karplus,et al.  Protein secondary structure prediction with a neural network. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[214]  Bressloff Analysis of quantal synaptic noise in neural networks using iterated function systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[215]  Dean Pomerleau,et al.  ALVINN, an autonomous land vehicle in a neural network , 2015 .

[216]  Monica A. Walker,et al.  Studies in Item Analysis and Prediction. , 1962 .

[217]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[218]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[219]  E M Harth,et al.  Brain functions and neural dynamics. , 1970, Journal of theoretical biology.

[220]  A. Aertsen,et al.  Synaptic plasticity in rat hippocampal slice cultures: local "Hebbian" conjunction of pre- and postsynaptic stimulation leads to distributed synaptic enhancement. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[221]  John W. Clark,et al.  Neural network models of nuclear systematics , 1993 .

[222]  C. H. Anderson,et al.  Unifying Perspectives on Neuronal Codes and Processing , 1996, ICANN.

[223]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[224]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[225]  C. Peterson Track finding with neural networks , 1989 .

[226]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[227]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[228]  Chris Eliasmith,et al.  Developing and applying a toolkit from a general neurocomputational framework , 1999, Neurocomputing.

[229]  B. Rost,et al.  Secondary structure prediction of all-helical proteins in two states. , 1993, Protein engineering.

[230]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[231]  Daniel L. Alkon,et al.  Memory Traces in the Brain , 1987 .

[232]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[233]  Taylor,et al.  Random iterative networks. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[234]  J. Zupan,et al.  Neural networks: A new method for solving chemical problems or just a passing phase? , 1991 .

[235]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[236]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[237]  B. Rost,et al.  Redefining the goals of protein secondary structure prediction. , 1994, Journal of molecular biology.

[238]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[239]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[240]  G. C. Littlewort,et al.  Computer simulation in brain science: Transition to cycling in neural networks , 1988 .

[241]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[242]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[243]  Johann Gasteiger,et al.  Neural Networks for Chemists: An Introduction , 1993 .

[244]  P. Peretto An introduction to the modeling of neural networks , 1992 .

[245]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[246]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[247]  Michael N. Liebman,et al.  Neural network analysis of protein tertiary structure , 1990 .

[248]  L. Garrido,et al.  Fast track finding with neural networks , 1991 .

[249]  Carsten Peterson,et al.  Neural Networks and NP-complete Optimization Problems; A Performance Study on the Graph Bisection Problem , 1988, Complex Syst..

[250]  Örjan Ekeberg,et al.  A One-Layer Feedback Artificial Neural Network with a Bayesian Learning Rule , 1989, Int. J. Neural Syst..

[251]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[252]  Mahesan Niranjan,et al.  Neural networks and radial basis functions in classifying static speech patterns , 1990 .

[253]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[254]  J. Seixas,et al.  NEURAL NETWORKS IN EXPERIMENTAL HIGH-ENERGY PHYSICS , 1992 .

[255]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[256]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[257]  W. Little The existence of persistent states in the brain , 1974 .

[258]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..