Pounding of superstructure segments in isolated elevated bridge during earthquakes

Past severe earthquakes indicate that pounding may cause considerable damage or even lead to collapse of colliding structures. The aim of this paper is to present an analysis of pounding between superstructure segments of an isolated elevated bridge induced by the propagating seismic wave. High-damping rubber bearings (HDRBs), used as isolation devices, are modelled by proposed non-linear formulation and the significance of the bearings model for pounding is indicated. The results of the study show that pounding leads to the increase or decrease of the forces acting on piers, depending on the gap size between superstructure segments. © 1998 John Wiley & Sons, Ltd.