A min-max regret approach for the Steiner Tree Problem with Interval Costs

Let G = (V,E) be a connected graph, where V and E represent, respectively, the node-set and the edge-set. Besides, let Q ⊆ V be a set of terminal nodes, and r ∈ Q be the root node of the graph. Given a weight cij ∈ N associated to each edge (i, j) ∈ E, the Steiner Tree Problem in graphs (STP) consists in finding a minimum-weight subgraph of G that spans all nodes in Q. In this paper, we consider the Min-max Regret Steiner Tree Problem with Interval Costs (MMR-STP), a robust variant of STP. In this variant, the weight of the edges are not known in advance, but are assumed to vary in the interval [lij, uij]. We develop an ILP formulation, an exact algorithm, and three heuristics for this ar X iv :2 10 1. 03 34 7v 1 [ m at h. O C ] 9 J an 2 02 1 problem. Computational experiments, performed on generalizations of the classical STP instances, evaluate the efficiency and the limits of the proposed methods.

[1]  H. Prömel,et al.  The Steiner Tree Problem: A Tour through Graphs, Algorithms, and Complexity , 2002 .

[2]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[3]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[4]  Anupam Gupta,et al.  Stochastic Steiner Trees Without a Root , 2005, ICALP.

[5]  Luiz Filipe M. Vieira,et al.  A MILP-based VND for the min-max regret Shortest Path Tree Problem with interval costs , 2018, Electron. Notes Discret. Math..

[6]  Luís Paquete,et al.  A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree Problem , 2019, SEA².

[7]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[8]  Abilio Lucena,et al.  A branch and cut algorithm for the Steiner problem in graphs , 1998, Networks.

[9]  Vahab S. Mirrokni,et al.  Two-stage Robust Network Design with Exponential Scenarios , 2011, Algorithmica.

[10]  Luiz F. M. Vieira,et al.  A Scenario Based Heuristic for the Robust Shortest Path Tree Problem**This work was partially supported by CNPq, CAPES, and FAPEMIG. , 2016 .

[11]  Michel X. Goemans,et al.  A catalog of steiner tree formulations , 1993, Networks.

[12]  A. Wald Contributions to the Theory of Statistical Estimation and Testing Hypotheses , 1939 .

[13]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[14]  Thiago F. Noronha,et al.  A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs , 2016, Comput. Oper. Res..

[15]  Roberto Montemanni,et al.  The robust shortest path problem with interval data via Benders decomposition , 2005, 4OR.

[16]  T. F. Noronha,et al.  Coupling scenario-based heuristics to exact methods for the robust weighted set covering problem with interval data* , 2016 .

[17]  János Barta,et al.  The Robust Traveling Salesman Problem with Interval Data , 2006, Transp. Sci..

[18]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[19]  Igor Averbakh,et al.  The Robust Set Covering Problem with interval data , 2011, Annals of Operations Research.

[20]  Stefan Voß,et al.  Steiner Tree Heuristics — A Survey , 1994 .

[21]  Martine Labbé,et al.  Reduction approaches for robust shortest path problems , 2011, Comput. Oper. Res..

[22]  M. R. Rao,et al.  The Steiner tree problem I: Formulations, compositions and extension of facets , 1994, Math. Program..

[23]  Cees Duin,et al.  The pilot method: A strategy for heuristic repetition with application to the Steiner problem in graphs , 1999, Networks.

[24]  Francisco Pérez-Galarce,et al.  Algorithms for the Minmax Regret Path problem with interval data , 2018, Inf. Sci..

[25]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[26]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[27]  Gerhard J. Woeginger,et al.  Pinpointing the complexity of the interval min-max regret knapsack problem , 2010, Discret. Optim..

[28]  Paolo Toth,et al.  Exact approaches for solving robust prize-collecting Steiner tree problems , 2013, Eur. J. Oper. Res..

[29]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[30]  Siavash Vahdati Daneshmand,et al.  A comparison of Steiner tree relaxations , 2001, Discret. Appl. Math..

[31]  Michael Jünger,et al.  Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut , 2010, ISAAC.

[32]  Jochen Könemann,et al.  Simple cost sharing schemes for multicommodity rent-or-buy and stochastic Steiner tree , 2006, STOC '06.

[33]  Paweł Zieliński,et al.  Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey , 2016 .

[34]  Manuel Iori,et al.  Heuristic and Exact Algorithms for the Interval Min-Max Regret Knapsack Problem , 2015, INFORMS J. Comput..