Convergence analysis of a projection semi-implicit coupling scheme for fluid–structure interaction problems

In this paper, we provide a convergence analysis of a projection semi-implicit scheme for the simulation of fluid–structure systems involving an incompressible viscous fluid. The error analysis is performed on a fully discretized linear coupled problem: a finite element approximation and a semi-implicit time-stepping strategy are respectively used for space and time discretization. The fluid is described by the Stokes equations, the structure by the classical linear elastodynamics equations (linearized elasticity, plate or shell models) and all changes of geometry are neglected. We derive an error estimate in finite time and we prove that the time discretization error for the coupling scheme is at least $${\sqrt{\delta t}}$$. Finally, some numerical experiments that confirm the theoretical analysis are presented.

[1]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[2]  Céline Grandmont Analyse mathématique et numérique de quelques problèmes d'intéraction fluide-structure , 1998 .

[3]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[4]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[5]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[6]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[7]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[8]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[9]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[10]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[11]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[12]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[13]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[14]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[15]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[16]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[17]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[18]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[19]  Santiago Badia,et al.  Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition , 2007, Numerische Mathematik.

[20]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[21]  Alessandro Veneziani,et al.  Pressure Correction Algebraic Splitting Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[22]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[23]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[24]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[25]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[26]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[27]  J. Craggs Applied Mathematical Sciences , 1973 .

[28]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[29]  Ekkehard Ramm,et al.  THE ARTIFICIAL ADDED MASS EFFECT IN SEQUENTIAL STAGGERED FLUID-STRUCTURE INTERACTION ALGORITHMS , 2006 .

[30]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[31]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[32]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[33]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[34]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[35]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[36]  Charbel Farhat,et al.  Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems , 2000 .

[37]  Patrick Le Tallec,et al.  Numerical analysis of a linearised fluid-structure interaction problem , 2000, Numerische Mathematik.

[38]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[39]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[40]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[41]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[42]  Marc Garbey,et al.  Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .

[43]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[44]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[45]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[46]  Takéo Takahashi Analyse des équations modélisant le mouvement des systèmes couplant des solides rigides et des fluides visqueux , 2002 .

[47]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..