Simple recurrence formulas to count maps on orientable surfaces

We establish a simple recurrence formula for the number Q g n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Q g n ( x ) where x is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers M g i , j that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large g. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula.Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in appearance to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.

[1]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[2]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[3]  Éric Fusy,et al.  A simple model of trees for unicellular maps , 2012, J. Comb. Theory A.

[4]  Olivier Bernardi,et al.  An analogue of the Harer-Zagier formula for unicellular maps on general surfaces , 2010, Adv. Appl. Math..

[5]  Zhicheng Gao The number of degree restricted maps on general surfaces , 1993, Discret. Math..

[6]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[7]  Guillaume Chapuy,et al.  Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.

[8]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[9]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[10]  Michio Jimbo,et al.  Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras , 2000 .

[11]  A. Okounkov Toda equations for Hurwitz numbers , 2000, math/0004128.

[12]  Edward A. Bender,et al.  The asymptotic number of rooted maps on a surface , 1986, J. Comb. Theory, Ser. A.

[13]  I. Goulden,et al.  The KP hierarchy, branched covers, and triangulations , 2008, 0803.3980.

[14]  Symmetric functions, codes of partitions and the KP hierarchy , 2009, 0902.4441.

[15]  Edward A. Bender,et al.  The Asymptotic Number of Rooted Maps on a Surface. II. Enumeration by Vertices and Faces , 1993, J. Comb. Theory, Ser. A.

[16]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[17]  Guillaume Chapuy,et al.  The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees , 2008, 0804.0546.

[18]  Edward A. Bender,et al.  The Map Asymptotics Constant tg , 2008, Electron. J. Comb..

[19]  Edward A. Bender,et al.  The number of rooted maps on an orientable surface , 1991, J. Comb. Theory, Ser. B.

[20]  A. Yu. Orlov,et al.  Hypergeometric Solutions of Soliton Equations , 2001 .

[21]  Didier Arquès,et al.  Énumération des cartes pointées sur une surface orientable de genre quelconque en fonction des nombres de sommets et de faces , 1999, J. Comb. Theory, Ser. B.

[23]  D. Jackson,et al.  A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus , 1990 .

[24]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.