Density functional theory of non-collinear magnetism

The authors formulate a density functional theory (DF) to describe non-collinear magnetism. Self-consistent, spin-polarised energy-band calculations based on the local approximation to DF theory are presented in which the magnetisation associated with different atoms in a unit cell is allowed to point along different, non-collinear directions. Non-self consistent calculations employing non-collinear quantisation axes have been presented before; the present calculations are, they believe, distinguished by: first, being self-consistent; second, providing the total energy; and third, providing the spin-quantisation axes. In their first applications they deal with the non-collinear antiferromagnets gamma -FeMn, RhMn3, and PtMn3 and show that their total energies are minimised in the tetrahedral (FeMn) or triangular (RhMn3, PtMn3) magnetic structures first proposed by Kouvel and Kasper (1963).

[1]  Y. Endoh,et al.  Antiferromagnetism of γ Iron Manganes Alloys , 1971 .

[2]  G. M. Stocks,et al.  Disordered local moment state of magnetic transition metals: a self-consistent KKR CPA calculation , 1983 .

[3]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[4]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[5]  C. D. Gelatt,et al.  Cohesive properties of metallic compounds: Augmented-spherical-wave calculations , 1979 .

[6]  L. Sandratskii,et al.  Symmetrised method for the calculation of the band structure of noncollinear magnets , 1986 .

[7]  R. Fruchart,et al.  Magnetic properties of the Mn3PtNx system , 1971 .

[8]  V. Heine,et al.  Photoemission from ferromagnetic metals above the Curie temperature. I. Simple models , 1985 .

[9]  C. D. Gelatt,et al.  Covalent magnetism: An alternative to the Stoner model , 1981 .

[10]  J. Kouvel,et al.  Long-range antiferromagnetism in disordered FeNiMn alloys , 1963 .

[11]  V. Heine,et al.  Magnetism in transition metals at finite temperatures: I. Computational model , 1982 .

[12]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[13]  Joseph Callaway,et al.  Lattice-parameter dependence of ferromagnetism in bcc and fcc iron , 1983 .

[14]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[15]  D. Koelling Self-consistent energy band calculations , 1981 .

[16]  A. Malozemoff,et al.  "Band-gap theory" of strong ferromagnetism: Application to concentrated crystalline and amorphous Fe- and Co-metalloid alloys , 1984 .

[17]  G. Kádár,et al.  Magnetic Structures and Exchange Interactions in the Mn-Pt System , 1968 .

[18]  N. Hamada,et al.  Magnetism of iron above the Curie temperature , 1983 .

[19]  C. D. Gelatt,et al.  Aspects of transition‐metal magnetism , 1982 .

[20]  R. D. Groot,et al.  Recent developments in half-metallic magnetism , 1986 .

[21]  Haas,et al.  Electronic structure of MnSb. , 1985, Physical review. B, Condensed matter.

[22]  Marcus,et al.  Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. , 1986, Physical review. B, Condensed matter.

[23]  D. Koelling,et al.  A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions , 1980 .

[24]  J. Kübler,et al.  Itinerant theory of localized magnetism , 1986 .

[25]  Wang,et al.  Theory of magnetic and structural ordering in iron. , 1985, Physical review letters.

[26]  P. Szabó,et al.  Investigation of the first-order magnetic transformation in Mn3Pt , 1967 .