Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery.

Scaffold diversity is a crucial feature of compound collections that has a huge impact on their success in biological screenings. The synthesis of highly complex and diverse scaffolds, which could be based on natural products, for example, is an arduous task that requires expertise in various aspects of organic synthesis and structural analysis. This challenge has been addressed by a number of synthesis designs, which employ natural products as a source of scaffold diversity, transform suitably designed common intermediates into various molecular frameworks, or entail highly concise synthetic routes to a number of distinct and complex scaffolds. In this Minireview, we highlight recent synthetic developments towards the construction of diverse and complex scaffolds and the application of the resulting compound collections in drug and probe discovery.

[1]  Adrià Cereto-Massagué,et al.  Molecular fingerprint similarity search in virtual screening. , 2015, Methods.

[2]  Stuart L. Schreiber,et al.  Stereoselective Synthesis of over Two Million Compounds Having Structural Features Both Reminiscent of Natural Products and Compatible with Miniaturized Cell-Based Assays , 1998 .

[3]  Herbert Waldmann,et al.  Biology‐Oriented Synthesis of a Tetrahydroisoquinoline‐Based Compound Collection Targeting Microtubule Polymerization , 2013, Chembiochem : a European journal of chemical biology.

[4]  Herbert Waldmann,et al.  Chemical biology--identification of small molecule modulators of cellular activity by natural product inspired synthesis. , 2008, Chemical Society reviews.

[5]  L. A. Marcaurelle,et al.  Diversity-oriented synthesis of 13- to 18-membered macrolactams via ring-closing metathesis. , 2011, The Journal of organic chemistry.

[6]  C. Dobson Chemical space and biology , 2004, Nature.

[7]  Kieron M. G. O'Connell,et al.  Diversity-oriented synthesis of bicyclic and tricyclic alkaloids. , 2010, Chemical communications.

[8]  D. Sheppard,et al.  Classifying shape coverage in fragment libraries using a fingerprinting approach. , 2015, Bioorganic & medicinal chemistry letters.

[9]  Stuart L Schreiber,et al.  Skeletal diversity via a branched pathway: efficient synthesis of 29 400 discrete, polycyclic compounds and their arraying into stock solutions. , 2002, Journal of the American Chemical Society.

[10]  Patrick W. Faloon,et al.  Synthesis of a novel suppressor of beta-cell apoptosis via diversity-oriented synthesis. , 2011, ACS medicinal chemistry letters.

[11]  Adam Nelson,et al.  Towards the realisation of lead-oriented synthesis. , 2014, Drug discovery today.

[12]  Jérôme Hert,et al.  Quantifying Biogenic Bias in Screening Libraries , 2009, Nature chemical biology.

[13]  Phil S. Baran,et al.  Scalable total synthesis and biological evaluation of haouamine A and its atropisomer. , 2009, Journal of the American Chemical Society.

[14]  Suzanne Fergus,et al.  Skeletal diversity construction via a branching synthetic strategy. , 2006, Chemical communications.

[15]  William L. Jorgensen Herausforderungen für die akademische Wirkstoff‐Forschung , 2012 .

[16]  G. Carter,et al.  Harnessing the biosynthetic capacity of marine-derived organisms. , 2011, Bioorganic & medicinal chemistry.

[17]  Herbert Waldmann,et al.  Biology-oriented synthesis of a natural-product inspired oxepane collection yields a small-molecule activator of the Wnt-pathway , 2011, Proceedings of the National Academy of Sciences.

[18]  K. Nicolaou The emergence of the structure of the molecule and the art of its synthesis. , 2013, Angewandte Chemie.

[19]  Jie Liang,et al.  Creation and manipulation of common functional groups en route to a skeletally diverse chemical library , 2011, Proceedings of the National Academy of Sciences.

[20]  M. Cummings,et al.  Structure-based macrocyclization yields hepatitis C virus NS5B inhibitors with improved binding affinities and pharmacokinetic properties. , 2012, Angewandte Chemie.

[21]  W. Matsui,et al.  Molecular Pathways Molecular Pathways : The Hedgehog Signaling Pathway in Cancer , 2012 .

[22]  Herbert Waldmann,et al.  Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Stefan Wetzel,et al.  Biology-oriented synthesis. , 2011, Angewandte Chemie.

[24]  Robert M. Williams,et al.  Enantiomeric natural products: occurrence and biogenesis. , 2012, Angewandte Chemie.

[25]  Chien-Hung Yeh,et al.  Scalable synthesis of cortistatin A and related structures. , 2011, Journal of the American Chemical Society.

[26]  H. Waldmann,et al.  Catalytic enantioselective synthesis of functionalized tropanes reveals novel inhibitors of hedgehog signaling. , 2013, Angewandte Chemie.

[27]  S. Wetzel,et al.  Biologie‐orientierte Synthese (BIOS) , 2011 .

[28]  Zainab Jagani,et al.  Unraveling the therapeutic potential of the Hedgehog pathway in cancer , 2013, Nature Medicine.

[29]  K. Nicolaou Vom Aufkommen des Molekülkonzepts zur Kunst der Molekülsynthese , 2013 .

[30]  H. Oikawa,et al.  Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. , 2014, Nature chemistry.

[31]  Paul Ha-Yeon Cheong,et al.  C-H···O non-classical hydrogen bonding in the stereomechanics of organic transformations: theory and recognition. , 2013, Organic & biomolecular chemistry.

[32]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[33]  H. Waldmann,et al.  A natural product inspired tetrahydropyran collection yields mitosis modulators that synergistically target CSE1L and tubulin. , 2013, Angewandte Chemie.

[34]  William L Jorgensen,et al.  Challenges for academic drug discovery. , 2012, Angewandte Chemie.

[35]  Phil S. Baran,et al.  Academia–Industry Symbiosis in Organic Chemistry , 2015, Accounts of chemical research.

[36]  D. Spring,et al.  A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds , 2015, Organic & biomolecular chemistry.

[37]  A. Zografos,et al.  Accessing the structural diversity of pyridone alkaloids: concise total synthesis of rac-citridone A. , 2011, Organic letters.

[38]  Herbert Waldmann,et al.  Principles, implementation, and application of biology-oriented synthesis (BIOS) , 2010, Biological chemistry.

[39]  Nathan T. Ross,et al.  An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. , 2010, Journal of the American Chemical Society.

[40]  Z. Derewenda,et al.  The occurrence of C-H...O hydrogen bonds in proteins. , 1995, Journal of molecular biology.

[41]  John S. Delaney,et al.  Assessing the ability of chemical similarity measures to discriminate between active and inactive compounds , 1996, Molecular Diversity.

[42]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[43]  Victor J Hruby Organic chemistry and biology: chemical biology through the eyes of collaboration. , 2009, The Journal of organic chemistry.

[44]  R. Hicklin,et al.  Synthesis of complex and diverse compounds through ring distortion of abietic acid. , 2014, Angewandte Chemie.

[45]  P. Baran,et al.  Scalable, enantioselective synthesis of germacrenes and related sesquiterpenes inspired by terpene cyclase phase logic. , 2012, Angewandte Chemie.

[46]  Andreas Bender,et al.  Anti-MRSA agent discovery using diversity-oriented synthesis. , 2008, Angewandte Chemie.

[47]  José L Medina-Franco,et al.  Molecular Scaffold Analysis of Natural Products Databases in the Public Domain , 2012, Chemical biology & drug design.

[48]  J. A. Grant,et al.  A modular lead-oriented synthesis of diverse piperazine, 1,4-diazepane and 1,5-diazocane scaffolds. , 2014, Organic & biomolecular chemistry.

[49]  Obdulia Rabal,et al.  Novel Scaffold Fingerprint (SFP): Applications in Scaffold Hopping and Scaffold-Based Selection of Diverse Compounds , 2015, J. Chem. Inf. Model..

[50]  Stuart L Schreiber,et al.  Generating Diverse Skeletons of Small Molecules Combinatorially , 2003, Science.

[51]  Fabrizio Giordanetto,et al.  The European lead factory—an experiment in collaborative drug discovery , 2016, Journal of Medicines Development Sciences.

[52]  Stefan Wetzel,et al.  Bioactivity-guided mapping and navigation of chemical space. , 2009, Nature chemical biology.

[53]  K. C. Nicolaou 2 . Current State of Affairs in the Drug Discovery and Development Process , 2014 .

[54]  Gisbert Schneider,et al.  Scaffold diversity of natural products: inspiration for combinatorial library design. , 2008, Natural product reports.

[55]  J. A. Grant,et al.  Modular, gold-catalyzed approach to the synthesis of lead-like piperazine scaffolds. , 2013, Organic letters.

[56]  H. Schöler,et al.  Discovery of neuritogenic compound classes inspired by natural products. , 2013, Angewandte Chemie.

[57]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[58]  Gregory P. Tochtrop,et al.  Molecular library synthesis using complex substrates: expanding the framework of triterpenoids. , 2013, The Journal of organic chemistry.

[59]  A. Strasser,et al.  The BCL-2 protein family: opposing activities that mediate cell death , 2008, Nature Reviews Molecular Cell Biology.

[60]  Anang A Shelat,et al.  Scaffold composition and biological relevance of screening libraries. , 2007, Nature chemical biology.

[61]  John P. Overington,et al.  The promise and peril of chemical probes. , 2015, Nature chemical biology.

[62]  Hyeong Jun An,et al.  Estimating the size of the human interactome , 2008, Proceedings of the National Academy of Sciences.

[63]  A. Sands,et al.  In vivo drug target discovery: identifying the best targets from the genome. , 2001, Current opinion in biotechnology.

[64]  Peter Willett,et al.  The Calculation of Molecular Structural Similarity: Principles and Practice , 2014, Molecular informatics.

[65]  David R Spring,et al.  Diversity-oriented synthesis: producing chemical tools for dissecting biology. , 2012, Chemical Society reviews.

[66]  Nathan Brown,et al.  On scaffolds and hopping in medicinal chemistry. , 2006, Mini reviews in medicinal chemistry.

[67]  A. Bender,et al.  Diversity-oriented synthesis of macrocyclic peptidomimetics , 2011, Proceedings of the National Academy of Sciences.

[68]  Xiaoguang Lei,et al.  Total syntheses of (-)-huperzine Q and (+)-lycopladines B and C. , 2015, Angewandte Chemie.

[69]  A. Ganesan The impact of natural products upon modern drug discovery. , 2008, Current opinion in chemical biology.

[70]  Shengzheng Wang,et al.  Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. , 2015, Journal of medicinal chemistry.

[71]  David R Spring,et al.  A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling. , 2013, Nature chemistry.

[72]  D. Spring,et al.  Diversity-oriented synthesis of drug-like macrocyclic scaffolds using an orthogonal organo- and metal catalysis strategy. , 2014, Angewandte Chemie.

[73]  P. Arya,et al.  Natural product-like chemical space: search for chemical dissectors of macromolecular interactions. , 2005, Current opinion in chemical biology.

[74]  Adam Nelson,et al.  A unified lead-oriented synthesis of over fifty molecular scaffolds. , 2015, Organic & biomolecular chemistry.

[75]  Adam Nelson,et al.  Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists , 2015, Angewandte Chemie.

[76]  Phil S. Baran,et al.  Scalable, stereocontrolled total syntheses of (±)-axinellamines A and B. , 2011, Journal of the American Chemical Society.

[77]  Stuart L Schreiber,et al.  Organic synthesis toward small-molecule probes and drugs , 2011, Proceedings of the National Academy of Sciences.

[78]  David R Spring,et al.  Diversity-oriented synthesis. , 2009, Chemical record.

[79]  R. Hicklin,et al.  A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. , 2013, Nature chemistry.

[80]  Xiaoguang Lei,et al.  Total Syntheses of Lycopodium Alkaloids ( + )-Fawcettimine , ( + )-Fawcettidine , and ( )-8-Deoxyserratinine * * , 2011 .

[81]  Siegfried R. Waldvogel,et al.  Diversitäts‐orientierte Synthese von polycyclischen Gerüsten durch Umsetzung eines von 2,4‐Dimethylphenol abgeleiteten anodischen Zwischenproduktes , 2011 .

[82]  S. Schreiber,et al.  Target-oriented and diversity-oriented organic synthesis in drug discovery. , 2000, Science.

[83]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[84]  Adam Nelson,et al.  A conceptual framework for analysing and planning synthetic approaches to diverse lead-like scaffolds. , 2013, Chemical communications.

[85]  Xiaoguang Lei,et al.  Collective Synthesis of Lycopodium Alkaloids and Tautomer Locking Strategy for the Total Synthesis of (−)-lycojapodine A , 2022 .

[86]  H. Waldmann,et al.  Discovery of inhibitors of the Wnt and Hedgehog signaling pathways through the catalytic enantioselective synthesis of an iridoid-inspired compound collection. , 2013, Angewandte Chemie.

[87]  William Lewis,et al.  Synthesis of natural-product-like scaffolds in unprecedented efficiency via a 12-fold branching pathway , 2011 .

[88]  P. Baran,et al.  C–H Methylation of Heteroarenes Inspired by Radical SAM Methyl Transferase , 2014, Journal of the American Chemical Society.

[89]  K C Nicolaou,et al.  Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[90]  A. Nadin,et al.  Leitstruktur‐orientierte Synthese: eine Alternative für die Synthesechemie , 2012 .

[91]  Stuart L Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[92]  Phil S Baran,et al.  Scalable enantioselective total synthesis of taxanes. , 2011, Nature chemistry.

[93]  A. Chang,et al.  Hedgehog pathway inhibition and the race against tumor evolution , 2012, The Journal of cell biology.

[94]  Carol A. Mulrooney,et al.  Build/couple/pair strategy for the synthesis of stereochemically diverse macrolactams via head-to-tail cyclization. , 2012, ACS combinatorial science.

[95]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[96]  D. Rogers,et al.  Using Extended-Connectivity Fingerprints with Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up , 2005, Journal of biomolecular screening.

[97]  Martin D. Burke,et al.  Eine Strategie für die Diversitäts‐orientierte Synthese , 2004 .

[98]  William D. Foulkes,et al.  Challenges to cancer control by screening , 2003, Nature Reviews Cancer.

[99]  Carol A. Mulrooney,et al.  Diversity-Oriented Synthesis-Facilitated Medicinal Chemistry: Toward the Development of Novel Antimalarial Agents , 2014, Journal of medicinal chemistry.

[100]  Jing Zhang,et al.  Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern , 2014, Nature Communications.

[101]  Stefan Wetzel,et al.  The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification , 2007, J. Chem. Inf. Model..

[102]  M. White Adding Aliphatic C–H Bond Oxidations to Synthesis , 2012, Science.

[103]  José L. Medina-Franco,et al.  Scaffold Diversity Analysis of Compound Data Sets Using an Entropy-Based Measure , 2009 .

[104]  Xiao‐Yu Liu,et al.  Generating skeletal diversity from the C19 -diterpenoid alkaloid deltaline: a ring-distortion approach. , 2015, Chemistry.

[105]  A. Hyman,et al.  Natural product-inspired cascade synthesis yields modulators of centrosome integrity. , 2012, Nature chemical biology.

[106]  Didier Rognan,et al.  Assessing the Scaffold Diversity of Screening Libraries , 2006, J. Chem. Inf. Model..

[107]  C. Tse,et al.  Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax) , 2015, Cell Death and Disease.

[108]  Peter Ertl,et al.  Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. , 2006, Journal of medicinal chemistry.

[109]  Stephen P. Hale,et al.  The exploration of macrocycles for drug discovery — an underexploited structural class , 2008, Nature Reviews Drug Discovery.

[110]  Markus Schürmann,et al.  Branching cascades: a concise synthetic strategy targeting diverse and complex molecular frameworks. , 2011, Angewandte Chemie.

[111]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[112]  Claude Ostermann,et al.  De novo branching cascades for structural and functional diversity in small molecules , 2015, Nature Communications.

[113]  Gavin Harper,et al.  Drug rings database with web interface. A tool for identifying alternative chemical rings in lead discovery programs. , 2003, Journal of medicinal chemistry.

[114]  N. Winssinger,et al.  Following the Lead from Nature: Divergent Pathways in Natural Product Synthesis and Diversity-Oriented Synthesis , 2013 .

[115]  G. Wei,et al.  Single Diastereomer of a Macrolactam Core Binds Specifically to Myeloid Cell Leukemia 1 (MCL1). , 2014, ACS medicinal chemistry letters.

[116]  Shridhar H. Thorat,et al.  Catalyst-dependent selectivity in the relay catalytic branching cascade. , 2015, Chemistry.

[117]  Peter Ertl,et al.  Intuitive Ordering of Scaffolds and Scaffold Similarity Searching Using Scaffold Keys , 2014, J. Chem. Inf. Model..

[118]  S. O’Connor,et al.  Chemistry and biology of monoterpene indole alkaloid biosynthesis. , 2006, Natural product reports.

[119]  H. Waldmann,et al.  Cascade syntheses routes to the centrocountins. , 2013, Chemistry.

[120]  Andreas Bender,et al.  Plate-Based Diversity Selection Based on Empirical HTS Data to Enhance the Number of Hits and Their Chemical Diversity , 2009, Journal of biomolecular screening.

[121]  Erik Sahai,et al.  Illuminating the metastatic process , 2007, Nature Reviews Cancer.

[122]  Patrick W. Faloon,et al.  Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. , 2015, Bioorganic & medicinal chemistry letters.

[123]  David R Spring,et al.  Gemmacin B: bringing diversity back into focus. , 2008, Organic & biomolecular chemistry.

[124]  Herbert Waldmann,et al.  Bioactivity-guided navigation of chemical space. , 2010, Accounts of chemical research.

[125]  Susan M. Schlenner,et al.  Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells , 2013, Nature Immunology.

[126]  Martin Brassard,et al.  Optimization of the potency and pharmacokinetic properties of a macrocyclic ghrelin receptor agonist (Part I): Development of ulimorelin (TZP-101) from hit to clinic. , 2011, Journal of medicinal chemistry.

[127]  Derek S. Tan,et al.  Diversity-oriented synthesis: exploring the intersections between chemistry and biology , 2005, Nature chemical biology.

[128]  David R Spring,et al.  Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. , 2010, Nature communications.

[129]  M. White,et al.  Total synthesis and study of 6-deoxyerythronolide B by late-stage C-H oxidation. , 2009, Nature chemistry.

[130]  G. Carter,et al.  Natural products and Pharma 2011: strategic changes spur new opportunities. , 2011, Natural product reports.

[131]  Herbert Waldmann,et al.  Charting Biological and Chemical Space: PSSC and SCONP as Guiding Principles for the Development of Compound Collections Based on Natural Product Scaffolds , 2006 .

[132]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[133]  Hans-Jörg Roth,et al.  There is no such thing as 'diversity'! , 2005, Current opinion in chemical biology.

[134]  Miklos Feher,et al.  Property Distributions: Differences between Drugs, Natural Products, and Molecules from Combinatorial Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[135]  M. White,et al.  On the macrocyclization of the erythromycin core: preorganization is not required. , 2011, Angewandte Chemie.

[136]  Adam Nelson,et al.  A systematic approach to diverse, lead-like scaffolds from α,α-disubstituted amino acids. , 2015, Chemical communications.

[137]  Ricardo Macarron,et al.  Enhancements of screening collections to address areas of unmet medical need: an industry perspective. , 2010, Current opinion in chemical biology.

[138]  H. Schöler,et al.  Highly enantioselective catalytic synthesis of neurite growth-promoting secoyohimbanes. , 2013, Chemistry & biology.

[139]  B. Sridhar,et al.  Relay catalytic branching cascade: a technique to access diverse molecular scaffolds. , 2013, Angewandte Chemie.

[140]  Channa K. Hattotuwagama,et al.  Lead-oriented synthesis: a new opportunity for synthetic chemistry. , 2012, Angewandte Chemie.

[141]  William Lewis,et al.  Combining two-directional synthesis and tandem reactions. Part 21: Exploitation of a dimeric macrocycle for chain terminus differentiation and synthesis of an sp(3)-rich library. , 2015, Bioorganic & medicinal chemistry.

[142]  K. Saxena,et al.  Discovery of a new class of inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B by biology-oriented synthesis. , 2008, Angewandte Chemie.

[143]  P G Pelicci,et al.  Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases , 2011, Oncogene.

[144]  A. H. Lipkus,et al.  Structural Diversity of Organic Chemistry. a Scaffold Analysis of the Cas Registry , 2022 .

[145]  H. Waldmann,et al.  Biology-oriented synthesis of stereochemically diverse natural-product-derived compound collections by iterative allylations on a solid support. , 2007, Chemistry.

[146]  É. Marsault,et al.  Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. , 2011, Journal of medicinal chemistry.

[147]  Robert M. Williams,et al.  Enantiomere Naturstoffe: Vorkommen und Biogenese , 2012 .

[148]  D. Spring,et al.  Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening. , 2010, Organic & biomolecular chemistry.

[149]  A. Trabocchi,et al.  Diversity-Oriented Synthesis as a Tool for Chemical Genetics , 2014, Molecules.

[150]  P. Arya,et al.  Exploring new chemical space by stereocontrolled diversity-oriented synthesis. , 2005, Chemistry & biology.

[151]  S. Waldvogel,et al.  Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. , 2011, Angewandte Chemie.

[152]  Stuart L. Schreiber,et al.  Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections , 2011, Proceedings of the National Academy of Sciences.

[153]  P. Baran,et al.  Scalable Total Syntheses of (-)-Hapalindole U and (+)-Ambiguine H. , 2015, Tetrahedron.

[154]  Lorenz M Mayr,et al.  The Future of High-Throughput Screening , 2008, Journal of biomolecular screening.

[155]  Mark Johnson,et al.  Algorithm for Naming Molecular Equivalence Classes Represented by Labeled Pseudographs , 2001, J. Chem. Inf. Comput. Sci..

[156]  H. Waldmann,et al.  Entwicklung einer neuen Klasse von Inhibitoren der Proteintyrosinphosphatase‐B aus Mycobacterium tuberculosis durch Biologie‐orientierte Synthese (BIOS) , 2008 .

[157]  H. Waldmann,et al.  Biology-oriented combined solid- and solution-phase synthesis of a macroline-like compound collection. , 2009, Chemistry.

[158]  Adam Nelson,et al.  Efficient discovery of bioactive scaffolds by activity-directed synthesis , 2014, Nature Chemistry.