Posterior Computations for Censored Regression Data

Abstract This article describes the computation of and sampling from the posterior density for censored regression problems with normal and generalized log-gamma errors. The data augmentation algorithm (Tanner and Wong 1987) is facilitated in the normal error case because of the form of the augmented posterior. In the generalized log-gamma context, this simplicity is absent. The work of Sweeting (1981) is used as a motivation to develop an importance sampling scheme to sample from an augmented posterior. It is shown how the predictive distribution for a new observation may be computed and sampled from. The methodology is illustrated with two examples.

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  Peter E. Rossi,et al.  Bayesian analysis of dichotomous quantal response models , 1984 .

[3]  Vern T. Farewell,et al.  A Study of Distributional Shape in Life Testing , 1977 .

[4]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[5]  T. Sweeting Scale Parameters: A Bayesian Treatment , 1981 .

[6]  D G Clayton,et al.  A Monte Carlo method for Bayesian inference in frailty models. , 1991, Biometrics.

[7]  J. Geweke,et al.  Exact predictive densities for linear models with arch disturbances , 1989 .

[8]  J. Geweke Dynamic econometric modeling: Exact inference in models with autoregressive conditional heteroscedasticity , 1988 .

[9]  J. Lawless Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .

[10]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[11]  B. M. Hill,et al.  Bayesian Inference in Statistical Analysis , 1974 .

[12]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[13]  T. J. DiCiccio Approximate inference for the generalized gamma distribution , 1987 .

[14]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[15]  Herman K. van Dijk,et al.  An algorithm for the computation of posterior moments and densities using simple importance sampling , 1986 .

[16]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[17]  Murray Aitkin,et al.  A Note on the Regression Analysis of Censored Data , 1981 .

[18]  C. N. Morris Comment: Simulation in Hierarchical Models , 1987 .

[19]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[20]  G. J. Hahn,et al.  A Simple Method for Regression Analysis With Censored Data , 1979 .

[21]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[22]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[23]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .