6,6-Dicyanopentafulvenes: teaching an old dog new tricks.

6,6-Dicyanopentafulvene (DCF) is a fascinating molecular entity that consists of a cyclopentadiene ring conjugated to an exocyclic double bond bearing two cyano groups on its periphery. Herein, we give a brief history of the chemistry of DCFs prior to our arrival to the field in 2011, followed by a summary of our work. We show how substitution on the ring and the exocyclic bond affects the HOMO and LUMO energies of pentafulvenes and how the design of DCFs was exploited computationally for the first time. Shortly after the report of the first rational synthesis of DCFs, we discovered that DCFs had a vast and astonishing array of reactivities to form new molecular entities. Simple, catalyst-free reactions between DCF acceptors and electron-rich donors led to the formation of scaffolds of exceptional complexity. Furthermore, our discovery that DCFs are capable of undergoing mild pentafulvene-to-benzene rearrangements challenges previous conventions of fulvene chemistry.

[1]  Christian Dahlstrand,et al.  Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. , 2014, Chemical reviews.

[2]  Peter Chen,et al.  A mild, thermal pentafulvene-to-benzene rearrangement. , 2013, Angewandte Chemie.

[3]  F. Diederich,et al.  Expanding the chemical structure space of opto-electronic molecular materials: unprecedented push-pull chromophores by reaction of a donor-substituted tetracyanofulvene with electron-rich alkynes. , 2013, Journal of the American Chemical Society.

[4]  F. Diederich,et al.  6,6-Dicyanopentafulvenes: electronic structure and regioselectivity in [2 + 2] cycloaddition-retroelectrocyclization reactions. , 2012, Journal of the American Chemical Society.

[5]  T. Okujima,et al.  Synthesis of push-pull chromophores by the sequential [2 + 2] cycloaddition of 1-azulenylbutadiynes with tetracyanoethylene and tetrathiafulvalene. , 2012, Organic & biomolecular chemistry.

[6]  F. Diederich,et al.  N,N'-Dicyanoquinone diimide-derived donor-acceptor chromophores: conformational analysis and optoelectronic properties. , 2012, Organic letters.

[7]  T. Michinobu,et al.  Photochemical control of a highly efficient addition reaction between electron-rich alkynes and tetracyanoethylene. , 2011, Chemical communications.

[8]  F. Diederich,et al.  Expanding the chemical space for push-pull chromophores by non-concerted [2+2] and [4+2] cycloadditions: access to a highly functionalised 6,6-dicyanopentafulvene with an intense, low-energy charge-transfer band. , 2011, Chemical communications.

[9]  M. Bruce Some Organometallic Chemistry of Tetracyanoethene: CN-displacement and Cycloaddition Reactions with Alkynyl–Transition Metal Complexes and Related Chemistry , 2011 .

[10]  Christian Dahlstrand,et al.  Substituent effects on the electron affinities and ionization energies of tria-, penta-, and heptafulvenes: a computational investigation. , 2010, The Journal of organic chemistry.

[11]  Chun‐Sing Lee,et al.  Synthesis, crystal structures, and photophysical properties of triphenylamine-based multicyano derivatives. , 2010, The Journal of organic chemistry.

[12]  Trisha L. Andrew,et al.  Synthesis, reactivity, and electronic properties of 6,6-dicyanofulvenes. , 2010, Organic letters.

[13]  F. Diederich,et al.  Non-planar push-pull chromophores. , 2010, Chemical communications.

[14]  F. Diederich,et al.  Mechanistic investigation of the dipolar [2+2] cycloaddition-cycloreversion reaction between 4-(N,N-dimethylamino)phenylacetylene and arylated 1,1-dicyanovinyl derivatives to form intramolecular charge-transfer chromophores. , 2010, Chemistry.

[15]  A. Katritzky,et al.  Novel dyestuffs containing dicyanomethylidene groups , 2009 .

[16]  F. Diederich,et al.  Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. , 2009, Accounts of chemical research.

[17]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[18]  D. Muthas,et al.  Scope and limitations of Baird's theory on triplet state aromaticity: application to the tuning of singlet-triplet energy gaps in fulvenes. , 2007, Chemistry.

[19]  Mark A Ratner,et al.  Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? , 2006, Journal of the American Chemical Society.

[20]  F. Diederich,et al.  Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.

[21]  Ivan Biaggio,et al.  A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.

[22]  H. Ottosson,et al.  Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? , 2004, Journal of the American Chemical Society.

[23]  Y. Tobe,et al.  Diels−Alder Reactions of Tetraethynylcyclopentadienones. An Approach to Differentially Substituted Hexaethynylbenzenes of C2v Symmetry , 1997 .

[24]  Norbert Jux,et al.  An Unusually Stable Pentaethynylcyclo‐pentadienyl Radical , 1996 .

[25]  J. Brédas,et al.  Donor-acceptor diphenylacetylenes : geometric structure, electronic structure, and second-order nonlinear optical properties , 1993 .

[26]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[27]  G. Zimmermann,et al.  Zur Gasphasenpyrolyse von 6-alkylierten Pentafulvenen , 1988 .

[28]  H. Junek,et al.  Aminophenyl-pentafulven-6,6-dicarbonitrile-Farbstoffe mit Absorptionen bis in den nahen Infrarot-Bereich. Synthesen mit Nitrilen. LXXVI , 1988 .

[29]  F. Bickelhaupt,et al.  Pentacyclo[4.3.1.01,6.07,908,10]decane. A cyclopropane edge-bridged prismane and its rearrangement to a fulvene , 1987 .

[30]  Y. Shvo,et al.  A new group of ruthenium complexes: structure and catalysis , 1986 .

[31]  S. Oikawa,et al.  PREFULVENE AS A STABLE INTERMEDIATE AT THE POTENTIAL ENERGY SURFACE MINIMUM OF THE BENZENE ⇌ BENZVALENE ISOMERIZATION PROCESS , 1984 .

[32]  M. Fox,et al.  Electrochemistry of cyclopentadienones , 1983 .

[33]  H. Junek,et al.  Synthesen mit Nitrilen, LXVI Synthese des 1,2,3,4‐Tetrachlorpentafulven‐6,6‐dicarbonitrils , 1983 .

[34]  J. E. Kent,et al.  Photochemistry of benzene isomers. 1. Fulvene and 3,4-dimethylenecyclobutene , 1981 .

[35]  R. King,et al.  Cyclization of dicyanovinylidene with two diphenylacetylene units to form a 6,6-dicyanofulvene derivative , 1975 .

[36]  H. Heaney,et al.  Aryne chemistry. Part XXXII. Reactions of tetrahalogenobenzynes with 6,6-dialkylfulvenes, and the photoisomerisation and thermal reactions of derived products , 1973 .

[37]  W. Lehnert Knoevenagel-kondensationen mit TiCl4/base—III : Umsetzungen von ketonen und α-halogenketonen mit malonester , 1973 .

[38]  T. J. Henry,et al.  Independent mechanisms in the thermal rearrangement of mono- and bicylic 3,4-dimethylenecyclobutene derivatives , 1972 .

[39]  H. Prinzbach,et al.  Vinylogous Fulvalene: Synthesis and Electrocyclic Reaction , 1972 .

[40]  W. Lehnert Knoevenagel-kondensationen mit titantetrachlorid/base—II: Alkyliden- und arylidenacet- bzw. -nitroessigester bei 0–22° , 1972 .

[41]  W. Lehnert Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). Alkyliden- und Arylidenmalonester bei 0–25°C. , 1970 .

[42]  F. Burden,et al.  Dipole Moment, Microwave Spectrum, and Electronic Structure of Fulvene , 1968 .

[43]  Y. Mori,et al.  The mechanism of the formation of fulvene from the gas phase-irradiated benzene , 1968 .

[44]  E. Bergmann Fulvenes and substituted fulvenes , 1968 .

[45]  G. Schulz,et al.  Fulvenes as Isomers of Benzenoid Compounds , 1963 .