6,6-Dicyanopentafulvenes: teaching an old dog new tricks.
暂无分享,去创建一个
[1] Christian Dahlstrand,et al. Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. , 2014, Chemical reviews.
[2] Peter Chen,et al. A mild, thermal pentafulvene-to-benzene rearrangement. , 2013, Angewandte Chemie.
[3] F. Diederich,et al. Expanding the chemical structure space of opto-electronic molecular materials: unprecedented push-pull chromophores by reaction of a donor-substituted tetracyanofulvene with electron-rich alkynes. , 2013, Journal of the American Chemical Society.
[4] F. Diederich,et al. 6,6-Dicyanopentafulvenes: electronic structure and regioselectivity in [2 + 2] cycloaddition-retroelectrocyclization reactions. , 2012, Journal of the American Chemical Society.
[5] T. Okujima,et al. Synthesis of push-pull chromophores by the sequential [2 + 2] cycloaddition of 1-azulenylbutadiynes with tetracyanoethylene and tetrathiafulvalene. , 2012, Organic & biomolecular chemistry.
[6] F. Diederich,et al. N,N'-Dicyanoquinone diimide-derived donor-acceptor chromophores: conformational analysis and optoelectronic properties. , 2012, Organic letters.
[7] T. Michinobu,et al. Photochemical control of a highly efficient addition reaction between electron-rich alkynes and tetracyanoethylene. , 2011, Chemical communications.
[8] F. Diederich,et al. Expanding the chemical space for push-pull chromophores by non-concerted [2+2] and [4+2] cycloadditions: access to a highly functionalised 6,6-dicyanopentafulvene with an intense, low-energy charge-transfer band. , 2011, Chemical communications.
[9] M. Bruce. Some Organometallic Chemistry of Tetracyanoethene: CN-displacement and Cycloaddition Reactions with Alkynyl–Transition Metal Complexes and Related Chemistry , 2011 .
[10] Christian Dahlstrand,et al. Substituent effects on the electron affinities and ionization energies of tria-, penta-, and heptafulvenes: a computational investigation. , 2010, The Journal of organic chemistry.
[11] Chun‐Sing Lee,et al. Synthesis, crystal structures, and photophysical properties of triphenylamine-based multicyano derivatives. , 2010, The Journal of organic chemistry.
[12] Trisha L. Andrew,et al. Synthesis, reactivity, and electronic properties of 6,6-dicyanofulvenes. , 2010, Organic letters.
[13] F. Diederich,et al. Non-planar push-pull chromophores. , 2010, Chemical communications.
[14] F. Diederich,et al. Mechanistic investigation of the dipolar [2+2] cycloaddition-cycloreversion reaction between 4-(N,N-dimethylamino)phenylacetylene and arylated 1,1-dicyanovinyl derivatives to form intramolecular charge-transfer chromophores. , 2010, Chemistry.
[15] A. Katritzky,et al. Novel dyestuffs containing dicyanomethylidene groups , 2009 .
[16] F. Diederich,et al. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. , 2009, Accounts of chemical research.
[17] M. Head‐Gordon,et al. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.
[18] D. Muthas,et al. Scope and limitations of Baird's theory on triplet state aromaticity: application to the tuning of singlet-triplet energy gaps in fulvenes. , 2007, Chemistry.
[19] Mark A Ratner,et al. Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? , 2006, Journal of the American Chemical Society.
[20] F. Diederich,et al. Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.
[21] Ivan Biaggio,et al. A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.
[22] H. Ottosson,et al. Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? , 2004, Journal of the American Chemical Society.
[23] Y. Tobe,et al. Diels−Alder Reactions of Tetraethynylcyclopentadienones. An Approach to Differentially Substituted Hexaethynylbenzenes of C2v Symmetry , 1997 .
[24] Norbert Jux,et al. An Unusually Stable Pentaethynylcyclo‐pentadienyl Radical , 1996 .
[25] J. Brédas,et al. Donor-acceptor diphenylacetylenes : geometric structure, electronic structure, and second-order nonlinear optical properties , 1993 .
[26] Corwin Hansch,et al. A survey of Hammett substituent constants and resonance and field parameters , 1991 .
[27] G. Zimmermann,et al. Zur Gasphasenpyrolyse von 6-alkylierten Pentafulvenen , 1988 .
[28] H. Junek,et al. Aminophenyl-pentafulven-6,6-dicarbonitrile-Farbstoffe mit Absorptionen bis in den nahen Infrarot-Bereich. Synthesen mit Nitrilen. LXXVI , 1988 .
[29] F. Bickelhaupt,et al. Pentacyclo[4.3.1.01,6.07,908,10]decane. A cyclopropane edge-bridged prismane and its rearrangement to a fulvene , 1987 .
[30] Y. Shvo,et al. A new group of ruthenium complexes: structure and catalysis , 1986 .
[31] S. Oikawa,et al. PREFULVENE AS A STABLE INTERMEDIATE AT THE POTENTIAL ENERGY SURFACE MINIMUM OF THE BENZENE ⇌ BENZVALENE ISOMERIZATION PROCESS , 1984 .
[32] M. Fox,et al. Electrochemistry of cyclopentadienones , 1983 .
[33] H. Junek,et al. Synthesen mit Nitrilen, LXVI Synthese des 1,2,3,4‐Tetrachlorpentafulven‐6,6‐dicarbonitrils , 1983 .
[34] J. E. Kent,et al. Photochemistry of benzene isomers. 1. Fulvene and 3,4-dimethylenecyclobutene , 1981 .
[35] R. King,et al. Cyclization of dicyanovinylidene with two diphenylacetylene units to form a 6,6-dicyanofulvene derivative , 1975 .
[36] H. Heaney,et al. Aryne chemistry. Part XXXII. Reactions of tetrahalogenobenzynes with 6,6-dialkylfulvenes, and the photoisomerisation and thermal reactions of derived products , 1973 .
[37] W. Lehnert. Knoevenagel-kondensationen mit TiCl4/base—III : Umsetzungen von ketonen und α-halogenketonen mit malonester , 1973 .
[38] T. J. Henry,et al. Independent mechanisms in the thermal rearrangement of mono- and bicylic 3,4-dimethylenecyclobutene derivatives , 1972 .
[39] H. Prinzbach,et al. Vinylogous Fulvalene: Synthesis and Electrocyclic Reaction , 1972 .
[40] W. Lehnert. Knoevenagel-kondensationen mit titantetrachlorid/base—II: Alkyliden- und arylidenacet- bzw. -nitroessigester bei 0–22° , 1972 .
[41] W. Lehnert. Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). Alkyliden- und Arylidenmalonester bei 0–25°C. , 1970 .
[42] F. Burden,et al. Dipole Moment, Microwave Spectrum, and Electronic Structure of Fulvene , 1968 .
[43] Y. Mori,et al. The mechanism of the formation of fulvene from the gas phase-irradiated benzene , 1968 .
[44] E. Bergmann. Fulvenes and substituted fulvenes , 1968 .
[45] G. Schulz,et al. Fulvenes as Isomers of Benzenoid Compounds , 1963 .