Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

[1]  Peter K. Todd,et al.  CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome , 2013, Neuron.

[2]  Chadwick M. Hales,et al.  Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration , 2013, Proceedings of the National Academy of Sciences.

[3]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[4]  C. Broeckhoven,et al.  hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations , 2013, Acta Neuropathologica.

[5]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[6]  G. Parkinson,et al.  C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes , 2012, Scientific Reports.

[7]  H. Moine,et al.  G‐quadruplexes in RNA biology , 2012, Wiley interdisciplinary reviews. RNA.

[8]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[9]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[10]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[11]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[12]  Han-Jou Chen,et al.  Characterization of the Properties of a Novel Mutation in VAPB in Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Biological Chemistry.

[13]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[14]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[15]  F. Hirth Drosophila melanogaster in the Study of Human Neurodegeneration , 2010, CNS & neurological disorders drug targets.

[16]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase , 2010, Proceedings of the National Academy of Sciences.

[17]  Peter K. Todd,et al.  RNA‐mediated neurodegeneration in repeat expansion disorders , 2009, Annals of neurology.

[18]  Eric T. Wang,et al.  Splice Site Strength-Dependent Activity and Genetic Buffering by Poly-G Runs , 2009, Nature Structural &Molecular Biology.

[19]  Matthias Mann,et al.  Unbiased RNA–protein interaction screen by quantitative proteomics , 2009, Proceedings of the National Academy of Sciences.

[20]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[21]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[22]  F. Baas,et al.  Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. , 2006, Brain : a journal of neurology.

[23]  A. Riggs,et al.  HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence , 2005, Nucleic acids research.

[24]  W. Hauswirth,et al.  A Muscleblind Knockout Model for Myotonic Dystrophy , 2003, Science.

[25]  M. Swanson,et al.  Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. , 2003, Gene expression patterns : GEP.

[26]  D. Engelke,et al.  Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. , 2001, RNA.

[27]  B. Byrne,et al.  Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy , 2000, The EMBO journal.

[28]  Stephen W. Wilson,et al.  Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. , 2000, Development.

[29]  N. Holder,et al.  Cell turnover in neuromasts of zebrafish larvae , 2000, Hearing Research.

[30]  Douglas L. Black,et al.  hnRNP H Is a Component of a Splicing Enhancer Complex That Activates a c-src Alternative Exon in Neuronal Cells , 1999, Molecular and Cellular Biology.