Bragg Scatter Detection by the WSR-88D. Part I: Algorithm Development

AbstractStudies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters’ relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algorithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases. Such an algorithm holds potential for radar calibration efforts and Bragg scatter studies in general.

[1]  David Atlas,et al.  METEROROLOGICAL “ANGEL” ECHOES , 1959 .

[2]  H. Óttersten,et al.  Atmospheric Structure and Radar Backscattering in Clear Air , 1969 .

[3]  K. Hardy,et al.  Radar investigations of convective patterns in the clear atmosphere. , 1969 .

[4]  R. Scotti,et al.  Measurements on the Growth of Small Disturbances in a Stratified Shear Layer , 1969 .

[5]  S. Thorpe Experiments on the Stability of Stratified Shear Flows , 1969 .

[6]  I. Katz,et al.  Probing the clear atmosphere with high power, high resolution radars , 1969 .

[7]  F. Pasqualucci,et al.  Estimating the Depth of the Daytime Convective Boundary Layer , 1982 .

[8]  Donald W. Burgess,et al.  Recording, Archiving, and Using WSR-88D Data , 1993 .

[9]  C. Knight,et al.  First radar echoes from cumulus clouds , 1993 .

[10]  S. Cohn Investigations of the Wavelength Dependence of Radar Backscatter from Atmospheric Turbulence , 1994 .

[11]  D. A. Carter,et al.  Interactions between clear‐air reflective layers and rain observed with a boundary layer wind profiler , 1995 .

[12]  C. Knight,et al.  Early Radar Echoes from Small, Warm Cumulus: Bragg and Hydrometeor Scattering , 1998 .

[13]  P. Duynkerke,et al.  Entrainment Parameterization in Convective Boundary Layers , 1999 .

[14]  Warner L. Ecklund,et al.  Use of Two Profilers during MCTEX for Unambiguous Identification of Bragg Scattering and Rayleigh Scattering , 1999 .

[15]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[16]  Valery M. Melnikov,et al.  Autocorrelation and Cross-Correlation Estimators of Polarimetric Variables , 2007 .

[17]  D. Stensrud Planetary boundary layer and turbulence parameterizations , 2007 .

[18]  Gunilla Svensson,et al.  On the Scale-dependence of the Gradient Richardson Number in the Residual Layer , 2008 .

[19]  K. Elmore,et al.  Radar Reflectivity–Based Estimates of Mixed Layer Depth , 2009 .

[20]  David J. Stensrud,et al.  Mapping Bragg Scatter with a Polarimetric WSR-88D , 2011 .

[21]  Methods for Identifying Systematic Differential Reflectivity (Zdr) Biases on the Operational WSR-88D Network , 2013 .

[22]  R. Rauber,et al.  A Revised Conceptual Model of the Tropical Marine Boundary Layer. Part II: Detecting Relative Humidity Layers Using Bragg Scattering from S-Band Radar , 2013 .

[23]  Sebastián M. Torres,et al.  Radial-Based Noise Power Estimation for Weather Radars , 2013 .

[24]  R. Rauber,et al.  A Revised Conceptual Model of the Tropical Marine Boundary Layer. Part III: Bragg Scattering Layer Statistical Properties , 2013 .

[25]  D. Stensrud,et al.  Structures of Bragg Scatter Observed with the Polarimetric WSR-88D , 2013 .

[26]  Igor R. Ivic,et al.  Effects of Radial-Based Noise Power Estimation on Spectral Moment Estimates , 2014 .

[27]  Igor R. Ivic On the Use of a Radial-Based Noise Power Estimation Technique to Improve Estimates of the Correlation Coefficient on Dual-Polarization Weather Radars , 2014 .

[28]  Robert R. Lee,et al.  Bragg Scatter Detection by the WSR-88D. Part II: Assessment of ZDR Bias Estimation , 2017 .

[29]  Nicole P. Hoban Estimating Systematic WSR-88 D Differential Reflectivity ( Z DR ) Biases Using Bragg Scattering , 2022 .