A revealed preference approach to computational complexity in economics

Recent results in complexity theory suggest that various economic theories require agents to solve computationally intractable problems. However, such results assume the agents are optimizing explicit utility functions, whereas the economic theories merely assume the agents behave rationally, where rational behavior is defined via some optimization problem. Might making rational choices be easier than solving the corresponding optimization problem? For at least one major economic theory, the theory of the consumer (which simply postulates that consumers are utility maximizing), we find this is indeed the case. In other words, we prove the possibly surprising result that computational constraints have no empirical consequences for consumer choice theory. Our result motivates a general approach for posing questions about the empirical content of computational constraints: the revealed preference approach to computational complexity. This approach complements the conventional worst-case view of computational complexity in important ways, and is methodologically close to mainstream economics.

[1]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[2]  P. Samuelson A Note on the Pure Theory of Consumer's Behaviour , 1938 .

[3]  Shang-Hua Teng,et al.  Smoothed analysis: an attempt to explain the behavior of algorithms in practice , 2009, CACM.

[4]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[5]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[6]  OSVRTI I PRIKAZI,et al.  Rational Choice , 2008, Encyclopedia of GIS.

[7]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[8]  Nikhil R. Devanur,et al.  Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.

[9]  Nikhil R. Devanur,et al.  An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.

[10]  Kasturi R. Varadarajan,et al.  Algorithmic Game Theory: Computation of Market Equilibria by Convex Programming , 2007 .

[11]  Venkatesan Guruswami,et al.  On profit-maximizing envy-free pricing , 2005, SODA '05.

[12]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[13]  H. Varian Revealed Preference , 2006 .

[14]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Andreu Mas-Colell,et al.  On Revealed Preference Analysis , 1978 .

[16]  Itzhak Gilboa,et al.  Fact-Free Learning , 2004 .

[17]  Vijay V. Vazirani,et al.  Eisenberg-Gale markets: algorithms and structural properties , 2007, STOC '07.

[18]  Mihalis Yannakakis,et al.  DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .

[19]  Yinyu Ye,et al.  A path to the Arrow–Debreu competitive market equilibrium , 2007, Math. Program..

[20]  H. Simon,et al.  Rationality in Psychology and Economics , 1986 .

[21]  Rosa L. Matzkin Axioms of Revealed Preference for Nonlinear Choice Sets , 1991 .

[22]  Michael Szenberg,et al.  Samuelsonian Economics and the Twenty‐First Century , 2006 .

[23]  Constantinos Daskalakis,et al.  Nash equilibria: Complexity, symmetries, and approximation , 2009, Comput. Sci. Rev..

[24]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[25]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[26]  W. Diewert,et al.  Linear Programming Tests of Regularity Conditions for Production Functions , 1983 .

[27]  Vijay V. Vazirani,et al.  A primal-dual algorithm for computing Fisher equilibrium in the absence of gross substitutability property , 2005, Theor. Comput. Sci..

[28]  Chris Shannon,et al.  Uniqueness, Stability, and Comparative Statics in Rationalizable Walrasian Markets , 1998 .

[29]  Christopher P. Chambers,et al.  Supermodularity and preferences , 2009, J. Econ. Theory.

[30]  Itzhak Gilboa,et al.  The Complexity of the Consumer Problem and Mental Accounting , 2010 .

[31]  S. Afriat Efficiency Estimation of Production Function , 1972 .

[32]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[33]  Rosa L. Matzkin,et al.  Testable Restrictions on the Equilibrium Manifold , 1996 .

[34]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[35]  Hal R. Varian,et al.  Non-parametric analysis of optimizing behavior with measurement error , 1985 .

[36]  E. Feigenbaum Simon, Herbert A. , 2006 .

[37]  H. Varian Non-parametric Tests of Consumer Behaviour , 1983 .

[38]  Maria-Florina Balcan,et al.  Approximation Algorithms and Online Mechanisms for Item Pricing , 2007, Theory Comput..

[39]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[40]  Kamal Jain,et al.  A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[41]  S. Afriat THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .

[42]  YannakakisMihalis,et al.  Market equilibrium under separable, piecewise-linear, concave utilities , 2011 .

[43]  Christopher P. Chambers,et al.  On behavioral complementarity and its implications , 2010, J. Econ. Theory.

[44]  M. Richter Revealed Preference Theory , 1966 .

[45]  Rakesh V. Vohra,et al.  Learning from revealed preference , 2006, EC '06.

[46]  H. Varian The Nonparametric Approach to Demand Analysis , 1982 .