Łojasiewicz inequalities with explicit exponents for smallest singular value functions

Let $F(x) := (f_{ij}(x))_{i=1,\ldots,p; j=1,\ldots,q},$ be a ($p\times q$)-real polynomial matrix and let $f(x)$ be the smallest singular value function of $F(x).$ In this paper, we first give the following {\em nonsmooth} version of \L ojasiewicz gradient inequality for the function $f$ with an explicit exponent: {\em For any $\bar x\in \Bbb R^n$, there exist $c > 0$ and $\epsilon > 0$ such that we have for all $\|x - \bar{x}\| < \epsilon,$ \begin{equation*} \inf \{ \| w \| \ : \ w \in {\partial} f(x) \} \ \ge \ c\, |f(x)-f(\bar x)|^{1 - \frac{2}{\mathscr R(n+p,2d+2)}}, \end{equation*} where ${\partial} f(x)$ is the limiting subdifferential of $f$ at $x$, $d:=\max_{i=1,\ldots,p; j=1,\ldots,q}\deg f_{i j}$ and $\mathscr R(n, d) := d(3d - 3)^{n-1}$ if $d \ge 2$ and $\mathscr R(n, d) := 1$ if $d = 1.$} Then we establish some versions of \L ojasiewicz inequality for the distance function with explicit exponents, locally and globally, for the smallest singular value function $f(x)$ of the matrix $F(x)$.

[1]  K. Kurdyka,et al.  Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials , 2005 .

[2]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[3]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[4]  J. Cimprič Strict Positivstellens\"atze for matrix polynomials with scalar constraints , 2010, 1011.4930.

[5]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[6]  Krzysztof Kurdyka,et al.  Separation of real algebraic sets and the Łojasiewicz exponent , 2014 .

[7]  T. Pham,et al.  {\L}ojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices , 2015, 1501.01419.

[8]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[9]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, 0812.2657.

[10]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[11]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[12]  Igor Klep,et al.  Pure states, positive matrix polynomials and sums of hermitian squares , 2010 .

[13]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[14]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[15]  David Yang Gao,et al.  NONCONVEX MINIMIZATION PROBLEMS , 2007 .

[16]  Tien Son Pham,et al.  An explicit bound for the Łojasiewicz exponent of real polynomials , 2012 .

[17]  S. Łojasiewicz Ensembles semi-analytiques , 1965 .

[18]  Huynh van Ngai,et al.  Error bounds for systems of lower semicontinuous functions in Asplund spaces , 2008, Math. Program..

[19]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[20]  Pablo Solernó,et al.  Effective Łojasiewicz inequalities in semialgebraic geometry , 1991, Applicable Algebra in Engineering, Communication and Computing.

[21]  Pierre-Antoine Absil,et al.  On the stable equilibrium points of gradient systems , 2006, Syst. Control. Lett..

[22]  A. Haraux Some applications of the Łojasiewicz gradient inequality , 2012 .

[23]  Krzysztof Kurdyka,et al.  Metric Properties of Semialgebraic Mappings , 2014, Discret. Comput. Geom..

[24]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[25]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[26]  J. Kollár Sharp effective Nullstellensatz , 1988 .