Widespread Translational Remodeling during Human Neuronal Differentiation.

[1]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[2]  Brian D. Freibaum,et al.  The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD , 2017, Front. Mol. Neurosci..

[3]  Rebecca D Hodge,et al.  A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. , 2017, Cell stem cell.

[4]  Q. Morris,et al.  MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs. , 2016, Cell reports.

[5]  B. Tian,et al.  Alternative polyadenylation of mRNA precursors , 2016, Nature Reviews Molecular Cell Biology.

[6]  A. Hinnebusch,et al.  Translational control by 5′-untranslated regions of eukaryotic mRNAs , 2016, Science.

[7]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[8]  Christine Mayr,et al.  Evolution and Biological Roles of Alternative 3'UTRs. , 2016, Trends in cell biology.

[9]  Melissa J. Moore,et al.  Redefining the Translational Status of 80S Monosomes , 2016, Cell.

[10]  R. Lehmann,et al.  Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. , 2016, Cell stem cell.

[11]  Helen S. Bateup,et al.  Establishment of Genome-edited Human Pluripotent Stem Cell Lines: From Targeting to Isolation , 2016, Journal of visualized experiments : JoVE.

[12]  Eric T. Wang,et al.  Distal Alternative Last Exons Localize mRNAs to Neural Projections. , 2016, Molecular cell.

[13]  T. Preiss,et al.  Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation , 2016, PloS one.

[14]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[15]  J. Doudna,et al.  Tunable protein synthesis by transcript isoforms in human cells , 2015, bioRxiv.

[16]  M. Barna,et al.  Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. , 2015, Annual review of cell and developmental biology.

[17]  J. Coller,et al.  Pausing on Polyribosomes: Make Way for Elongation in Translational Control , 2015, Cell.

[18]  T. Jensen,et al.  Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes , 2015, Nature Reviews Molecular Cell Biology.

[19]  L. Pilaz,et al.  Post‐transcriptional regulation in corticogenesis: how RNA‐binding proteins help build the brain , 2015, Wiley interdisciplinary reviews. RNA.

[20]  Wei Li,et al.  NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation , 2015, eLife.

[21]  J. Rosenfeld,et al.  Author response: NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation , 2015 .

[22]  J. Manley,et al.  ALS mutations in TLS/FUS disrupt target gene expression , 2015, Genes & development.

[23]  H. Zoghbi,et al.  MECP2 disorders: from the clinic to mice and back. , 2015, The Journal of clinical investigation.

[24]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[25]  Benjamin J. Blencowe,et al.  Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and Functional Roles , 2015, Neuron.

[26]  M. Sachs Faculty Opinions recommendation of eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. , 2015 .

[27]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[28]  N. Sonenberg,et al.  Targeting the translation machinery in cancer , 2015, Nature Reviews Drug Discovery.

[29]  G. Sauvageau,et al.  Haploinsufficiency screen highlights two distinct groups of ribosomal protein genes essential for embryonic stem cell fate , 2015, Proceedings of the National Academy of Sciences.

[30]  Rhiju Das,et al.  RNA regulons in Hox 5′UTRs confer ribosome specificity to gene regulation , 2014, Nature.

[31]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[32]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[33]  R. Blelloch,et al.  Regulation of microRNA function in somatic stem cell proliferation and differentiation , 2014, Nature Reviews Molecular Cell Biology.

[34]  E. Lai,et al.  Alternative polyadenylation in the nervous system: To what lengths will 3′ UTR extensions take us? , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[36]  S. Joseph,et al.  Fragile X mental retardation protein regulates translation by binding directly to the ribosome. , 2014, Molecular cell.

[37]  P. Brown,et al.  Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments , 2014, eLife.

[38]  Michael T. McManus,et al.  Massively parallel functional annotation of 3' untranslated regions , 2014, Nature Biotechnology.

[39]  Jeffrey A. Magee,et al.  Haematopoietic stem cells require a highly regulated protein synthesis rate , 2014, Nature.

[40]  Rachel Green,et al.  Dom34 Rescues Ribosomes in 3′ Untranslated Regions , 2014, Cell.

[41]  Nicholas T. Ingolia Ribosome profiling: new views of translation, from single codons to genome scale , 2014, Nature Reviews Genetics.

[42]  Julie L. Yang,et al.  Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression , 2013, Genes & development.

[43]  A. Bordey,et al.  mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. , 2013, Cell reports.

[44]  C. Holt,et al.  The Central Dogma Decentralized: New Perspectives on RNA Function and Local Translation in Neurons , 2013, Neuron.

[45]  Sol Katzman,et al.  Frac-seq reveals isoform-specific recruitment to polyribosomes , 2013, Genome research.

[46]  J. Lacaille,et al.  Reactivation of stalled polyribosomes in synaptic plasticity , 2013, Proceedings of the National Academy of Sciences.

[47]  Robert B Darnell,et al.  RNA protein interaction in neurons. , 2013, Annual review of neuroscience.

[48]  K. Shokat,et al.  Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers , 2013, Proceedings of the National Academy of Sciences.

[49]  R. Elkon,et al.  Alternative cleavage and polyadenylation: extent, regulation and function , 2013, Nature Reviews Genetics.

[50]  Joshua A. Arribere,et al.  Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing , 2013, Genome research.

[51]  E. Lai,et al.  Widespread and extensive lengthening of 3′ UTRs in the mammalian brain , 2013, Genome research.

[52]  J. Darnell,et al.  The translation of translational control by FMRP: therapeutic targets for FXS , 2013, Nature Neuroscience.

[53]  Christos G. Gkogkas,et al.  Autism-related deficits via dysregulated eIF4E-dependent translational control , 2012, Nature.

[54]  S. Whelan,et al.  A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs , 2012, Proceedings of the National Academy of Sciences.

[55]  M. Levine,et al.  ELAV mediates 3' UTR extension in the Drosophila nervous system. , 2012, Genes & development.

[56]  B. Strunk,et al.  A Translation-Like Cycle Is a Quality Control Checkpoint for Maturing 40S Ribosome Subunits , 2012, Cell.

[57]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[58]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[59]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[60]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[61]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[62]  J. García-Verdugo,et al.  Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. , 2011, Cell stem cell.

[63]  M. Levine,et al.  Neural-specific elongation of 3′ UTRs during Drosophila development , 2011, Proceedings of the National Academy of Sciences.

[64]  D. Licatalosi,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[65]  M. Greenberg,et al.  Neuronal activity-regulated gene transcription in synapse development and cognitive function. , 2011, Cold Spring Harbor perspectives in biology.

[66]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[67]  Y. Qi,et al.  Nuclear pre-mRNA 3′-end processing regulates synapse and axon development in C. elegans , 2010, Development.

[68]  Jennifer A. Erwin,et al.  Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations , 2010, Cell.

[69]  D. Felsher,et al.  MYC as a regulator of ribosome biogenesis and protein synthesis , 2010, Nature Reviews Cancer.

[70]  J. Graber,et al.  Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. , 2009, Cancer research.

[71]  Eric T. Wang,et al.  An Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence Data , 2009, PLoS Comput. Biol..

[72]  C. Mayr,et al.  Widespread Shortening of 3′UTRs by Alternative Cleavage and Polyadenylation Activates Oncogenes in Cancer Cells , 2009, Cell.

[73]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[74]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[75]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[76]  N. Sonenberg,et al.  Translational Control of Long-Lasting Synaptic Plasticity and Memory , 2009, Neuron.

[77]  Mark F. Bear,et al.  The Autistic Neuron: Troubled Translation? , 2008, Cell.

[78]  G. Seydoux,et al.  3′ UTRs Are the Primary Regulators of Gene Expression in the C. elegans Germline , 2008, Current Biology.

[79]  N. Woo,et al.  Distinct Role of Long 3′ UTR BDNF mRNA in Spine Morphology and Synaptic Plasticity in Hippocampal Neurons , 2008, Cell.

[80]  P. Sharp,et al.  Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites , 2008, Science.

[81]  Lil Pabon,et al.  A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. , 2008, Cell stem cell.

[82]  Pamela A. Silver,et al.  Functional Specificity among Ribosomal Proteins Regulates Gene Expression , 2007, Cell.

[83]  P. Walker,et al.  Role of Sox2 in the development of the mouse neocortex. , 2006, Developmental biology.

[84]  Y. Kim,et al.  Derivation and Characterization of New Human Embryonic Stem Cell Lines: SNUhES1, SNUhES2, and SNUhES3 , 2005, Stem cells.

[85]  A. Bird,et al.  The major form of MeCP2 has a novel N-terminus generated by alternative splicing. , 2004, Nucleic acids research.

[86]  Amarendra S. Yavatkar,et al.  StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. , 2013, Stem cell research.

[87]  M. Tomishima,et al.  Converting human pluripotent stem cells to neural tissue and neurons to model neurodegeneration. , 2011, Methods in molecular biology.