Overview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery

The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identifies inherent error sources as well as those introduced by making simplifying assumptions, and indicates research areas.

[1]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[2]  James Theiler,et al.  Scene analysis and detection in thermal infrared remote sensing using independent component analysis , 2004, SPIE Defense + Commercial Sensing.

[3]  Luis Angel García-Escudero,et al.  Generalized Radius Processes for Elliptically Contoured Distributions , 2005 .

[4]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[5]  Dimitris G. Manolakis,et al.  Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data , 2004, SPIE Defense + Commercial Sensing.

[6]  Sean Murphy,et al.  A new approach to anomaly detection in hyperspectral images , 2003, SPIE Defense + Commercial Sensing.

[7]  James Theiler,et al.  Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[8]  Gary A. Shaw,et al.  Hyperspectral adaptive matched-filter detectors: practical performance comparison , 2001, SPIE Defense + Commercial Sensing.

[9]  A. Fraser,et al.  Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery , 2005 .

[10]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[11]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[12]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[13]  David P. Miller,et al.  The importance of background in the detection and identification of gas plumes using emissive infrared hyperspectral sensing , 2003, SPIE Defense + Commercial Sensing.

[14]  Peter Bajorski Analytical comparison of the matched filter and orthogonal subspace projection detectors in structured models for hyperspectral images , 2006, SPIE Defense + Commercial Sensing.

[15]  G. Casella,et al.  Objective Bayesian Variable Selection , 2006 .

[16]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[17]  Neal B. Gallagher,et al.  Impact of background and atmospheric variability on infrared hyperspectral chemical detection sensitivity , 2003, SPIE Defense + Commercial Sensing.

[18]  P. S. Kealy,et al.  Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[19]  David W. Messinger,et al.  Gaseous plume detection in hyperspectral images: a comparison of methods , 2004, SPIE Defense + Commercial Sensing.

[20]  Tom Burr,et al.  Chemical identification using Bayesian model selection , 2002 .

[21]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[22]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[23]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[24]  D. G. Simpson,et al.  Unmasking Multivariate Outliers and Leverage Points: Comment , 1990 .

[25]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[26]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[27]  Dimitris G. Manolakis,et al.  Statistical characterization of natural hyperspectral backgrounds using t-elliptically contoured distributions , 2005 .

[28]  Dimitris G. Manolakis,et al.  A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy , 2005, SPIE Defense + Commercial Sensing.

[29]  Gregory J. Exarhos,et al.  Chemical and Biological Point Sensors for Homeland Defense , 2004 .

[30]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Ronald G. Resmini,et al.  A new approach to infer surface emissivity parameters from longwave infrared hyperspectral measurements , 2006, SPIE Defense + Commercial Sensing.

[32]  Dimitris G. Manolakis,et al.  Modeling hyperspectral imaging data , 2003, SPIE Defense + Commercial Sensing.

[33]  Richard N. Czerwinski,et al.  A procedure for embedding effluent plumes into LWIR imagery , 2005 .

[34]  Tom Burr,et al.  Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion , 2008, Commun. Stat. Simul. Comput..

[35]  K. Roeder,et al.  Journal of the American Statistical Association: Comment , 2006 .

[36]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[37]  J. Friedman Regularized Discriminant Analysis , 1989 .

[38]  James Theiler,et al.  Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  Tsutomu Shimada,et al.  Comparisons between hyperspectral passive and multispectral active sensor measurements , 2002, SPIE Defense + Commercial Sensing.

[40]  Alan D. Stocker,et al.  AHI: an airborne long-wave infrared hyperspectral imager , 1998, Optics & Photonics.

[41]  Timothy J. Johnson,et al.  The PNNL quantitative infrared database for gas-phase sensing: a spectral library for environmental, hazmat, and public safety standoff detection , 2004, SPIE Optics East.

[42]  John P. Kerekes,et al.  Statistics of hyperspectral imaging data , 2001, SPIE Defense + Commercial Sensing.

[43]  M. Bernhardt,et al.  New models for hyperspectral anomaly detection and un-mixing , 2005 .

[45]  Barry M. Wise,et al.  Estimation of trace vapor concentration-pathlength in plumes for remote sensing applications from hyperspectral images , 2003 .

[46]  S. J. Young,et al.  An in‐scene method for atmospheric compensation of thermal hyperspectral data , 2002 .