Overview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery
暂无分享,去创建一个
[1] L. Wasserman,et al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .
[2] James Theiler,et al. Scene analysis and detection in thermal infrared remote sensing using independent component analysis , 2004, SPIE Defense + Commercial Sensing.
[3] Luis Angel García-Escudero,et al. Generalized Radius Processes for Elliptically Contoured Distributions , 2005 .
[4] P. Rousseeuw,et al. Unmasking Multivariate Outliers and Leverage Points , 1990 .
[5] Dimitris G. Manolakis,et al. Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data , 2004, SPIE Defense + Commercial Sensing.
[6] Sean Murphy,et al. A new approach to anomaly detection in hyperspectral images , 2003, SPIE Defense + Commercial Sensing.
[7] James Theiler,et al. Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.
[8] Gary A. Shaw,et al. Hyperspectral adaptive matched-filter detectors: practical performance comparison , 2001, SPIE Defense + Commercial Sensing.
[9] A. Fraser,et al. Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery , 2005 .
[10] Chein-I Chang,et al. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..
[11] A. Berk. MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .
[12] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[13] David P. Miller,et al. The importance of background in the detection and identification of gas plumes using emissive infrared hyperspectral sensing , 2003, SPIE Defense + Commercial Sensing.
[14] Peter Bajorski. Analytical comparison of the matched filter and orthogonal subspace projection detectors in structured models for hyperspectral images , 2006, SPIE Defense + Commercial Sensing.
[15] G. Casella,et al. Objective Bayesian Variable Selection , 2006 .
[16] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[17] Neal B. Gallagher,et al. Impact of background and atmospheric variability on infrared hyperspectral chemical detection sensitivity , 2003, SPIE Defense + Commercial Sensing.
[18] P. S. Kealy,et al. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..
[19] David W. Messinger,et al. Gaseous plume detection in hyperspectral images: a comparison of methods , 2004, SPIE Defense + Commercial Sensing.
[20] Tom Burr,et al. Chemical identification using Bayesian model selection , 2002 .
[21] H. S. Wolff,et al. iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.
[22] D. Ruppert,et al. Measurement Error in Nonlinear Models , 1995 .
[23] D. Madigan,et al. Bayesian Model Averaging for Linear Regression Models , 1997 .
[24] D. G. Simpson,et al. Unmasking Multivariate Outliers and Leverage Points: Comment , 1990 .
[25] Wallace M. Porter,et al. The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .
[26] Edward J. Wegman,et al. Statistical Signal Processing , 1985 .
[27] Dimitris G. Manolakis,et al. Statistical characterization of natural hyperspectral backgrounds using t-elliptically contoured distributions , 2005 .
[28] Dimitris G. Manolakis,et al. A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy , 2005, SPIE Defense + Commercial Sensing.
[29] Gregory J. Exarhos,et al. Chemical and Biological Point Sensors for Homeland Defense , 2004 .
[30] E. J. Kelly. An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.
[31] Ronald G. Resmini,et al. A new approach to infer surface emissivity parameters from longwave infrared hyperspectral measurements , 2006, SPIE Defense + Commercial Sensing.
[32] Dimitris G. Manolakis,et al. Modeling hyperspectral imaging data , 2003, SPIE Defense + Commercial Sensing.
[33] Richard N. Czerwinski,et al. A procedure for embedding effluent plumes into LWIR imagery , 2005 .
[34] Tom Burr,et al. Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion , 2008, Commun. Stat. Simul. Comput..
[35] K. Roeder,et al. Journal of the American Statistical Association: Comment , 2006 .
[36] Dimitris G. Manolakis,et al. Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..
[37] J. Friedman. Regularized Discriminant Analysis , 1989 .
[38] James Theiler,et al. Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery , 2001, IEEE Trans. Geosci. Remote. Sens..
[39] Tsutomu Shimada,et al. Comparisons between hyperspectral passive and multispectral active sensor measurements , 2002, SPIE Defense + Commercial Sensing.
[40] Alan D. Stocker,et al. AHI: an airborne long-wave infrared hyperspectral imager , 1998, Optics & Photonics.
[41] Timothy J. Johnson,et al. The PNNL quantitative infrared database for gas-phase sensing: a spectral library for environmental, hazmat, and public safety standoff detection , 2004, SPIE Optics East.
[42] John P. Kerekes,et al. Statistics of hyperspectral imaging data , 2001, SPIE Defense + Commercial Sensing.
[43] M. Bernhardt,et al. New models for hyperspectral anomaly detection and un-mixing , 2005 .
[45] Barry M. Wise,et al. Estimation of trace vapor concentration-pathlength in plumes for remote sensing applications from hyperspectral images , 2003 .
[46] S. J. Young,et al. An in‐scene method for atmospheric compensation of thermal hyperspectral data , 2002 .