Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats.

We demonstrate silicon-organic hybrid (SOH) electro-optic modulators that enable quadrature phase-shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM) with high signal quality and record-low energy consumption. SOH integration combines highly efficient electro-optic organic materials with conventional silicon-on-insulator (SOI) slot waveguides, and allows to overcome the intrinsic limitations of silicon as an optical integration platform. We demonstrate QPSK and 16QAM signaling at symbol rates of 28 GBd with peak-to-peak drive voltages of 0.6 V(pp). For the 16QAM experiment at 112 Gbit/s, we measure a bit-error ratio of 5.1 × 10⁻⁵ and a record-low energy consumption of only 19 fJ/bit.

[1]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[2]  F. Derr,et al.  Coherent optical QPSK intradyne system: concept and digital receiver realization , 1992 .

[3]  R Lawson,et al.  Optical modulation and detection in slotted Silicon waveguides. , 2005, Optics express.

[4]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[5]  Wolfgang Freude,et al.  Silicon-on-Insulator Modulators for Next-Generation 100 Gbit/s-Ethernet , 2007 .

[6]  Wolfgang Freude,et al.  High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. , 2008, Optics express.

[7]  Larry R. Dalton,et al.  Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response , 2008 .

[8]  P. Verheyen,et al.  High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. , 2010, Optics express.

[9]  Jingdong Luo,et al.  Tuning the Kinetics and Energetics of Diels−Alder Cycloaddition Reactions to Improve Poling Efficiency and Thermal Stability of High-Temperature Cross-Linked Electro-Optic Polymers , 2010 .

[10]  R Schmogrow,et al.  Real-Time Software-Defined Multiformat Transmitter Generating 64QAM at 28 GBd , 2010, IEEE Photonics Technology Letters.

[11]  Michael Hochberg,et al.  Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. , 2010, Optics express.

[12]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[13]  Jingdong Luo,et al.  40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides. , 2010, Optics letters.

[14]  Jun Ushida,et al.  25 GHz operation of silicon optical modulator with projection MOS structure , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[15]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[16]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[17]  Jingdong Luo,et al.  Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications† , 2011 .

[18]  Michael Nagel,et al.  Pockels effect based fully integrated, strained silicon electro-optic modulator. , 2011, Optics express.

[19]  Jingdong Luo,et al.  Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore , 2011 .

[20]  Michael Hochberg,et al.  Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator , 2011 .

[21]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[22]  H. Okayama,et al.  25-Gbps operation of silicon p-i-n Mach-Zehnder optical modulator with 100-μm-long phase shifter , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[23]  C. Koos,et al.  Low-Loss Silicon Strip-to-Slot Mode Converters , 2013, IEEE Photonics Journal.

[24]  Raluca Dinu,et al.  Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. , 2013, Optics express.

[25]  Wolfgang Freude,et al.  Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation , 2013 .

[26]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Xingyu Zhang,et al.  Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. , 2013, Optics letters.

[28]  Kal Shastri,et al.  112Gb/s DP-QPSK transmission Over 2427km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[29]  Ray T. Chen,et al.  Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  S. Chandrasekhar,et al.  Monolithic Silicon Photonic Integrated Circuits for Compact 100 $^{+}$Gb/s Coherent Optical Receivers and Transmitters , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Ray T. Chen,et al.  Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide. , 2014, Optics express.

[32]  C. Koos,et al.  Connecting silicon photonic circuits to multi-core fibers by photonic wire bonding , 2014, 2014 Optical Interconnects Conference.

[33]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[34]  Guo-Qiang Lo,et al.  Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands. , 2014, Optics express.

[35]  Ming C. Wu,et al.  Germanium Gate PhotoMOSFET Integrated to Silicon Photonics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.