Synergy of in-situ heterogeneous interphases tailored lithium deposition

[1]  J. Tu,et al.  Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries , 2022, Nano Energy.

[2]  Rui Zhang,et al.  The Origin of Fast Lithium‐Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes , 2022, Small Structures.

[3]  Linghai Xie,et al.  Expediting Sulfur Reduction/Evolution Reactions with Integrated Electrocatalytic Network: A Comprehensive Kinetic Map. , 2022, Nano letters.

[4]  Guangmin Zhou,et al.  Formulating energy density for designing practical lithium–sulfur batteries , 2022, Nature Energy.

[5]  X. Tao,et al.  Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries , 2022, Science.

[6]  Kyu-Nam Jung,et al.  Elastomeric electrolytes for high-energy solid-state lithium batteries , 2022, Nature.

[7]  Y. Ye,et al.  Capturing the swelling of solid-electrolyte interphase in lithium metal batteries , 2022, Science.

[8]  Wei Ai,et al.  Lithiophilic Sites Dependency of Lithium Deposition in Li Metal Host Anodes , 2021, Nano Energy.

[9]  Gustavo M. Hobold,et al.  Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes , 2021, Nature Energy.

[10]  Weishan Li,et al.  Artificial interphases enable dendrite-free Li-metal anodes , 2021, Journal of Energy Chemistry.

[11]  Ji‐Guang Zhang,et al.  Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries , 2021, Nature Energy.

[12]  X. Tao,et al.  Marrying Ester Group with Lithium Salt: Cellulose‐Acetate‐Enabled LiF‐Enriched Interface for Stable Lithium Metal Anodes , 2021, Advanced Functional Materials.

[13]  Y. Ein‐Eli,et al.  Molecular Engineering Approaches to Fabricate Artificial Solid‐Electrolyte Interphases on Anodes for Li‐Ion Batteries: A Critical Review , 2021, Advanced Energy Materials.

[14]  Haoshen Zhou,et al.  A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent , 2021, Nature Energy.

[15]  L. Archer,et al.  Stabilizing metal battery anodes through the design of solid electrolyte interphases , 2021 .

[16]  Yi Cui,et al.  Corrosion of lithium metal anodes during calendar ageing and its microscopic origins , 2021, Nature Energy.

[17]  Eric J. Dufek,et al.  A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li‐Ion and Li‐Metal Batteries , 2021, Advanced Energy Materials.

[18]  Pei Dong,et al.  A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase , 2021, Advanced Energy Materials.

[19]  R. Hu,et al.  Constructing Li‐Rich Artificial SEI Layer in Alloy–Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All‐Solid‐State Lithium Metal Batteries , 2021, Advanced materials.

[20]  A. Manthiram,et al.  Delineating the Lithium–Electrolyte Interfacial Chemistry and the Dynamics of Lithium Deposition in Lithium–Sulfur Batteries , 2021, Advanced Energy Materials.

[21]  Ji‐Guang Zhang,et al.  Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes , 2020, Advanced Energy Materials.

[22]  Yan Yu,et al.  g‐C3N4 Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode , 2020, Advanced Energy Materials.

[23]  Xiulin Fan,et al.  Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries , 2020, Nature Energy.

[24]  R. Pathak,et al.  Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition , 2020, Nature Communications.

[25]  K. Zaghib,et al.  Engineering interfacial adhesion for high-performance lithium metal anode , 2020 .

[26]  Jiaqi Huang,et al.  A compact inorganic layer for robust anode protection in lithium‐sulfur batteries , 2020 .

[27]  Zhongyue Cao,et al.  Ball Milling of Hexagonal Boron Nitride Microflakes in Ammonia Fluoride Solution Gives Fluorinated Nanosheets That Serve as Effective Water-Dispersible Lubricant Additives , 2019, ACS Applied Nano Materials.

[28]  J. Rani,et al.  An effective performance of F-Doped hexagonal boron nitride nanosheets as cathode material in magnesium battery , 2019, Materials Chemistry and Physics.

[29]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[30]  Ruifeng Zhang,et al.  Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode , 2019, Energy Storage Materials.

[31]  Xiulin Fan,et al.  Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery , 2018, Science Advances.

[32]  P. Ajayan,et al.  Fluorinated h-BN as a magnetic semiconductor , 2017, Science Advances.

[33]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[34]  Dean J. Miller,et al.  Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries , 2017, Nature Energy.

[35]  T. Zhao,et al.  First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries. , 2017, ACS applied materials & interfaces.

[36]  Xiulin Fan,et al.  High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. , 2016, Nano letters.

[37]  A. Gross,et al.  Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. , 2014, The Journal of chemical physics.

[38]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[39]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .