TRPA1 promotes the maturation of embryonic stem cell-derived cardiomyocytes by regulating mitochondrial biogenesis and dynamics

[1]  T. Šarić,et al.  Co-transplantation of Mesenchymal Stromal Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Cardiac Function After Myocardial Damage , 2022, Frontiers in Cardiovascular Medicine.

[2]  Ying Mei,et al.  Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy , 2021, Frontiers in Cardiovascular Medicine.

[3]  S. Tsang,et al.  Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes , 2021, Cells.

[4]  Z. Cai,et al.  Extracellular and Intracellular Angiotensin II Regulate the Automaticity of Developing Cardiomyocytes via Different Signaling Pathways , 2021, Frontiers in Molecular Biosciences.

[5]  H. Jasper,et al.  Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury , 2021, Redox biology.

[6]  X. Yao,et al.  TRPC7 regulates the electrophysiological functions of embryonic stem cell-derived cardiomyocytes , 2021, Stem cell research & therapy.

[7]  X. Yao,et al.  TRPV1 channels regulate the automaticity of embryonic stem cell‐derived cardiomyocytes through stimulating the Na+/Ca2+ exchanger current , 2021, Journal of cellular physiology.

[8]  Hideki Uosaki,et al.  PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2 , 2021, Nature Communications.

[9]  Richard T. Lee,et al.  Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes , 2021, Stem cell research & therapy.

[10]  Jun Ren,et al.  Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside , 2020, Ageing Research Reviews.

[11]  Wesley L. McKeithan,et al.  Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes , 2020, Cell reports.

[12]  Zhice Xu,et al.  PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells , 2020, Aging.

[13]  W. Pu,et al.  Cardiomyocyte Maturation: New Phase in Development. , 2020, Circulation research.

[14]  Hao Zhou,et al.  Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury , 2020, Acta pharmaceutica Sinica. B.

[15]  B. Soh,et al.  Mending a broken heart: current strategies and limitations of cell-based therapy , 2020, Stem Cell Research & Therapy.

[16]  M. Nishida,et al.  TRPC Channels in Cardiac Plasticity , 2020, Cells.

[17]  Xiaobo B Han,et al.  Transient Receptor Potential Ankyrin 1 Contributes to Lysophosphatidylcholine-Induced Intracellular Calcium Regulation and THP-1-Derived Macrophage Activation , 2019, The Journal of Membrane Biology.

[18]  Jianfang Liu,et al.  The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges , 2019, Front. Pharmacol..

[19]  H. Ruohola-Baker,et al.  Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells , 2019, Stem cell reports.

[20]  P. Alves,et al.  Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1&agr; and LDHA , 2018, Circulation research.

[21]  Min Xu,et al.  DUSP1 recuses diabetic nephropathy via repressing JNK‐Mff‐mitochondrial fission pathways , 2018, Journal of cellular physiology.

[22]  J. Ježek,et al.  Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression , 2018, Antioxidants.

[23]  J. Hoek,et al.  Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity , 2017, Proceedings of the National Academy of Sciences.

[24]  E. Holzbaur,et al.  Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks , 2016, Nature Communications.

[25]  G. Dorn,et al.  Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice , 2015, Science.

[26]  Rick B. Vega,et al.  Maintaining ancient organelles: mitochondrial biogenesis and maturation. , 2015, Circulation research.

[27]  H. Ruohola-Baker,et al.  Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. , 2014, Journal of molecular and cellular cardiology.

[28]  A. Szallasi,et al.  Transient receptor potential (TRP) channels: a clinical perspective , 2014, British journal of pharmacology.

[29]  Lil Pabon,et al.  Engineering Adolescence: Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes , 2014, Circulation research.

[30]  J. Nunnari,et al.  Mitochondrial form and function , 2014, Nature.

[31]  R. Willette,et al.  Unrestrained p38 MAPK Activation in Dusp1/4 Double-Null Mice Induces Cardiomyopathy , 2013, Circulation research.

[32]  S. Keyse,et al.  Dual-specificity MAP kinase phosphatases (MKPs) , 2013, The FEBS journal.

[33]  J. Molkentin,et al.  TRPC Channels As Effectors of Cardiac Hypertrophy , 2011, Circulation research.

[34]  Yonghong Shi,et al.  Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. , 2009, Cell metabolism.

[35]  T. Chan,et al.  TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model. , 2009, Cardiovascular research.

[36]  N. Bunnett,et al.  Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1 , 2008, Proceedings of the National Academy of Sciences.

[37]  A. Garnier,et al.  Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. , 2008, Cardiovascular research.

[38]  Lila R Collins,et al.  Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts , 2007, Nature Biotechnology.

[39]  P. Geiger,et al.  Calcium Induces Increases in Peroxisome Proliferator-activated Receptor γ Coactivator-1α and Mitochondrial Biogenesis by a Pathway Leading to p38 Mitogen-activated Protein Kinase Activation* , 2007, Journal of Biological Chemistry.

[40]  A. Patapoutian,et al.  TRPM8 Is Required for Cold Sensation in Mice , 2007, Neuron.

[41]  Andre Terzic,et al.  Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells , 2007, Nature Clinical Practice Cardiovascular Medicine.

[42]  David Julius,et al.  TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents , 2006, Cell.

[43]  M. Palacín,et al.  The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. , 2005, Human molecular genetics.

[44]  M. van der Giezen,et al.  Degenerate mitochondria , 2005, EMBO reports.

[45]  R. Scarpulla,et al.  Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators , 2005, Molecular and Cellular Biology.

[46]  R. Barr,et al.  Cell size and communication: role in structural and electrical development and remodeling of the heart. , 2004, Heart rhythm.

[47]  D. McKemy,et al.  Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1 , 2004, Nature.

[48]  J. Zierath,et al.  Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism , 2003, The Journal of Biological Chemistry.

[49]  Peter McIntyre,et al.  ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures , 2003, Cell.

[50]  Peter Lipp,et al.  Mitochondria are morphologically and functionally heterogeneous within cells , 2002, The EMBO journal.

[51]  D. McKemy,et al.  Identification of a cold receptor reveals a general role for TRP channels in thermosensation , 2002, Nature.

[52]  P. Doevendans,et al.  Cardiomyocyte differentiation of mouse and human embryonic stem cells * , 2002, Journal of anatomy.

[53]  J. Marín-García,et al.  Heart mitochondrial DNA and enzyme changes during early human development , 2000, Molecular and Cellular Biochemistry.

[54]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[55]  S. Meloche,et al.  Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression , 1997, Oncogene.

[56]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[57]  S. Keyse An emerging family of dual specificity MAP kinase phosphatases. , 1995, Biochimica et biophysica acta.

[58]  R. Scarpulla,et al.  Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Scarpulla,et al.  Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. , 1993, Genes & development.

[60]  Y. Shiba,et al.  Transplantation of Pluripotent Stem Cell-Derived Cardiomyocytes into a Myocardial Infarction Model of Cynomolgus Monkey. , 2021, Methods in molecular biology.

[61]  Y. Geng,et al.  Transient receptor potential ankyrin 1 protects against sepsis-induced kidney injury by modulating mitochondrial biogenesis and mitophagy. , 2018, American journal of translational research.

[62]  Tamara Luti Rosenbaum Emir TRP Channels in the Heart , 2017 .

[63]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..