Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway

[1]  Eric Darcy,et al.  Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. , 2017 .

[2]  K. Smith,et al.  Numerical Investigation of Thermal Runaway Propagation Induced By Internal Short Circuits in Li-Ion Cells , 2017 .

[3]  Said Al-Hallaj,et al.  Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study , 2017 .

[4]  Yanbao Ma,et al.  Prevent thermal runaway of lithium-ion batteries with minichannel cooling , 2017 .

[5]  Christian Veje,et al.  Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations , 2017 .

[6]  Eric Darcy,et al.  18650 Cell Bottom Vent: Preliminary Evaluation into its Merits for Preventing Side Wall Rupture , 2016 .

[7]  Minggao Ouyang,et al.  A 3D thermal runaway propagation model for a large format lithium ion battery module , 2016 .

[8]  Eric Darcy,et al.  On-Demand Internal Short Circuit Device Reveals Li-Ion Cell Design Vulnerabilities and Enables Verification of Safer, Higher Performing Battery Designs , 2016 .

[9]  Eric Darcy,et al.  Passively Thermal Runaway Propagation Resistant Battery Module that Achieves > 190 Wh/kg , 2016 .

[10]  Liwen Jin,et al.  Thermal Management of Densely-packed EV Battery with Forced Air Cooling Strategies , 2016 .

[11]  Ralph E. White,et al.  A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell , 2016 .

[12]  Fredrik Larsson,et al.  Thermal Modelling of Cell-to-Cell Fire Propagation and Cascading Thermal Runaway Failure Effects for Lithium-Ion Battery Cells and Modules Using Fire Walls , 2016 .

[13]  E. Darcy Challenges With Achieving >180Wh/kg Li-ion Battery Modules that Don't Propagate Thermal Runaway or Emit Flames/Sparks , 2015 .

[14]  Peng Wu,et al.  Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery , 2015 .

[15]  Christopher J. Orendorff,et al.  Failure propagation in multi-cell lithium ion batteries , 2015 .

[16]  Eric Darcy,et al.  Driving Factors for Mitigating Cell Thermal Runaway Propagation and Arresting Flames in High Performing Li-Ion Battery Designs , 2015 .

[17]  Susan L. Rose-Pehrsson,et al.  Lithium Battery Safety/Cell-to-Cell Failure Project FY14 Progress Report , 2015 .

[18]  Xuning Feng,et al.  Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module , 2015 .

[19]  Partha P. Mukherjee,et al.  Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules , 2015 .

[20]  Bernard Desmet,et al.  Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery , 2014 .

[21]  Anthony Jarrett,et al.  Influence of operating conditions on the optimum design of electric vehicle battery cooling plates , 2014 .

[22]  Viktor Hacker,et al.  Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes , 2014 .

[23]  Ahmad Pesaran,et al.  NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells , 2013 .

[24]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[25]  H. Maleki,et al.  Internal short circuit in Li-ion cells , 2009 .

[26]  J. Dahn,et al.  Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells , 2001 .

[27]  Y. Çengel Heat and Mass Transfer: Fundamentals and Applications , 2000 .

[28]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .