Author Manuscript, Published in "european Conference on Evolutionary Computation, Machine Learning and Data Mining in Validation of a Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm

We apply evolutionary computation to calibrate the parameters of a morphogenesis model of Drosophila early development. The model aims to describe the establishment of the steady gradients of Bicoid and Caudal proteins along the antero-posterior axis of the embryo of Drosophila . The model equations consist of a system of non-linear parabolic partial differential equations with initial and zero flux boundary conditions. We compare the results of single- and multi-objective variants of the CMA-ES algorithm for the model the calibration with the experimental data. Whereas the multi-objective algorithm computes a full approximation of the Pareto front, repeated runs of the single-objective algorithm give solutions that dominate (in the Pareto sense) the results of the multi-objective approach. We retain as best solutions those found by the latter technique. From the biological point of view, all such solutions are all equally acceptable, and for our test cases, the relative error between the experimental data and validated model solutions on the Pareto front are in the range 3% *** 6%. This technique is general and can be used as a generic tool for parameter calibration problems.

[1]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[2]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[3]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[6]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[7]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[8]  Michèle Sebag,et al.  Parametric and non-parametric identification of macro-mechanical models , 1997 .

[9]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[11]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[14]  John Reinitz,et al.  Registration of the expression patterns of Drosophila segmentation genes by two independent methods , 2001, Bioinform..

[15]  N. Hansen,et al.  PSO Facing Non-Separable and Ill-Conditioned Problems , 2008 .

[16]  Rui Dilão,et al.  Validation and Calibration of Models for Reaction–Diffusion Systems , 1997, patt-sol/9712007.

[17]  John Reinitz,et al.  Spatio-Temporal Registration of the Expression Patterns of Drosophila Segmentation Genes , 1999, ISMB.

[18]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[19]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[21]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[22]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Rui Dilão,et al.  Modeling segmental patterning in Drosophila: Maternal and gap genes. , 2006, Journal of theoretical biology.

[25]  H. Jäckle,et al.  From gradients to stripes in Drosophila embryogenesis: filling in the gaps. , 1996, Trends in genetics : TIG.

[26]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[27]  C. Nüsslein-Volhard Gradients that organize embryo development. , 1996, Scientific American.

[28]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[29]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[30]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[31]  Joshua D. Knowles,et al.  Investigations into the Effect of Multiobjectivization in Protein Structure Prediction , 2008, PPSN.