Data-adaptive regularization for DOA estimation using sparse spectrum fitting

Regularization parameter selection is critical to the performance of many sparsity-exploiting Direction-Of-Arrival (DOA) estimation algorithms. In this paper, we propose an automatic selector for choosing this parameter in the DOA estimation algorithm, which is based on the analysis of its optimality conditions. This selector requires very limited prior information and is computationally efficient. Through simulation examples, the effectiveness and robustness of the selector are illustrated.

[1]  Joseph Shmuel Picard,et al.  Error bounds for convex parameter estimation , 2012, Signal Process..

[2]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[3]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[4]  Mostafa Kaveh,et al.  Sparse Spatial Spectral Estimation: A Covariance Fitting Algorithm, Performance and Regularization , 2013, IEEE Transactions on Signal Processing.

[5]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[6]  M. Kaveh,et al.  Sparse spectral fitting for Direction Of Arrival and power estimation , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[7]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[8]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.