Synthesis, properties, and LED performance of highly luminescent metal complexes containing indolizino[3,4,5-ab]isoindoles

We report the synthesis, X-ray structures, optical and electrochemical properties, as well as fabrication of light-emitting devices for complexes which have cyclometalated ligands, pin (2-pyridin-2-yl-indolizino[3,4,5-ab]isoindole) and qin (2-quinolin-2-yl-indolizino[3,4,5-ab]isoindole). The new complexes are [Ir(L1)3−x(L2)x], [Pt(L1)(L2)], and [Pd(L1)(L2)] (L1 = pin, qin; L2 = acac (acetylacenato), pic (2-pyridinecarboxylato); x = 0, 1). The Ir and Pt complexes are highly luminescent, even at room temperature, and the relative luminescence quantum efficiencies are as high as 61%. The Pd complexes exhibit luminescence in the solid state, but the luminescence was quenched in solution. The X-ray crystal structures of Pt(pin)(acac), Pd(qin)(acac) and Pd(qin)(acac) were also obtained. The brightness of the light-emitting device reached values as high as 1.4 × 104 cd/m2 and Ir(pin)3 emits beautiful green light.

[1]  S. Jung,et al.  Iridium Complexes with Cyclometalated 2‐Cycloalkenyl‐Pyridine Ligands as Highly Efficient Emitters for Organic Light‐Emitting Diodes , 2008 .

[2]  S. Jenekhe Polymer semiconductors: a fast mover with a bright spark. , 2008, Nature materials.

[3]  Wai-Yeung Wong,et al.  A Multifunctional Iridium‐Carbazolyl Orange Phosphor for High‐Performance Two‐Element WOLED Exploiting Exciton‐Managed Fluorescence/Phosphorescence , 2008 .

[4]  Todd B. Marder,et al.  Manipulating Charge‐Transfer Character with Electron‐Withdrawing Main‐Group Moieties for the Color Tuning of Iridium Electrophosphors , 2008 .

[5]  Hoi Sing Kwok,et al.  Red‐Light‐Emitting Iridium Complexes with Hole‐Transporting 9‐Arylcarbazole Moieties for Electrophosphorescence Efficiency/Color Purity Trade‐off Optimization , 2008 .

[6]  M. Thompson The Evolution of Organometallic Complexes in Organic Light-Emitting Devices , 2007 .

[7]  George G. Malliaras,et al.  Electroluminescent devices from ionic transition metal complexes , 2007 .

[8]  Wai-Yeung Wong,et al.  Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs. , 2007, Angewandte Chemie.

[9]  Stephen R Forrest,et al.  Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. , 2007, Angewandte Chemie.

[10]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[11]  Wai-Yeung Wong,et al.  Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphores. , 2006, Angewandte Chemie.

[12]  Chunhui Huang,et al.  Red Phosphorescent Iridium Complex Containing Carbazole‐Functionalized β‐Diketonate for Highly Efficient Nondoped Organic Light‐Emitting Diodes , 2006 .

[13]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[14]  A. Monkman,et al.  Bridged diiridium complexes for electrophosphorescent OLEDs: synthesis, X-ray crystal structures, photophysics, and devices , 2006 .

[15]  F. Wudl,et al.  Efficient Blue‐Light‐Emitting Electroluminescent Devices with a Robust Fluorophore: 7,8,10‐Triphenylfluoranthene , 2006 .

[16]  S. J. Farley,et al.  Controlling emission energy, self-quenching, and excimer formation in highly luminescent N--C--N-coordinated platinum(II) complexes. , 2005, Inorganic chemistry.

[17]  Stephen R Forrest,et al.  Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. , 2005, Inorganic chemistry.

[18]  C. Shu,et al.  Heteroleptic cyclometalated iridium(III) complexes displaying blue phosphorescence in solution and solid state at room temperature. , 2005, Inorganic chemistry.

[19]  J. Kido,et al.  Synthesis of polymer‐iridium complex and its electroluminescent characteristics , 2005 .

[20]  Muhammed Yousufuddin,et al.  Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. , 2005, Inorganic chemistry.

[21]  Chihaya Adachi,et al.  100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films , 2005 .

[22]  Shubhashish Datta,et al.  Relationship between the ionization and oxidation potentials of molecular organic semiconductors , 2005 .

[23]  Hasuck Kim,et al.  Efficient electrogenerated chemiluminescence from cyclometalated iridium(III) complexes. , 2005, Journal of the American Chemical Society.

[24]  Biwu Ma,et al.  Synthetic control of Pt...Pt separation and photophysics of binuclear platinum complexes. , 2005, Journal of the American Chemical Society.

[25]  Chien‐Hong Cheng,et al.  Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands , 2004 .

[26]  Yoshiharu Sato,et al.  Synthesis and properties of highly fluorescent indolizino[3,4,5-ab]isoindoles. , 2004, Journal of the American Chemical Society.

[27]  Jang‐Joo Kim,et al.  Polymer-Based Blue Electrophosphorescent Light-Emitting Diodes Using a Bisorthometalated Ir(III) Complex as the Triplet Emitter , 2004 .

[28]  Yuh-Sheng Wen,et al.  Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands , 2004 .

[29]  D. Moses,et al.  White light electrophosphorescence from polyfluorene-based light-emitting diodes: Utilization of fluorenone defects , 2004 .

[30]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[31]  Stephen R. Forrest,et al.  Efficient Organic Electrophosphorescent White‐Light‐Emitting Device with a Triple Doped Emissive Layer , 2004 .

[32]  S. Tokito,et al.  Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers , 2003 .

[33]  Stephen R. Forrest,et al.  Operational stability of electrophosphorescent devices containing p and n doped transport layers , 2003 .

[34]  Sergey Lamansky,et al.  Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. , 2003, Journal of the American Chemical Society.

[35]  R. Friend,et al.  Attaching perylene dyes to polyfluorene: three simple, efficient methods for facile color tuning of light-emitting polymers. , 2003, Journal of the American Chemical Society.

[36]  E. Zangrando,et al.  Influence of Pyridine-Imidazoline Ligands on the Reactivity of Palladium-Methyl Complexes with Carbon Monoxide , 2002 .

[37]  Gregory D. Phelan,et al.  Divalent osmium complexes: synthesis, characterization, strong red phosphorescence, and electrophosphorescence. , 2002, Journal of the American Chemical Society.

[38]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[39]  Jiann T. Lin,et al.  New Star-Shaped Luminescent Triarylamines: Synthesis, Thermal, Photophysical, and Electroluminescent Characteristics , 2002 .

[40]  C. Che,et al.  [(C^N^N)Pt(C≡C)nR] (HC^N^N = 6-aryl-2,2′-bipyridine, n = 1-4, R = aryl, SiMe3) as a new class of light-emitting materials and their applications in electrophosphorescent devices , 2002 .

[41]  Sergey Lamansky,et al.  Synthesis and characterization of phosphorescent cyclometalated platinum complexes. , 2001, Inorganic chemistry.

[42]  A. Heeger,et al.  A Tetrahedral Oligo(phenylenevinylene) Molecule of Intermediate Dimensions: Effect of Molecular Shape on the Morphology and Electroluminescence of Organic Glasses , 2001 .

[43]  Y. Tao,et al.  Organic Light-Emitting Diodes Based on 2-(Stilben-4-yl)benzoxazole Derivatives: An Implication on the Emission Mechanism , 2001 .

[44]  Chi-Ming Che,et al.  π−π Interactions in Organometallic Systems. Crystal Structures and Spectroscopic Properties of Luminescent Mono-, Bi-, and Trinuclear Trans-cyclometalated Platinum(II) Complexes Derived from 2,6-Diphenylpyridine , 2001 .

[45]  D Murphy,et al.  Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. , 2001, Journal of the American Chemical Society.

[46]  E. Balasubramaniam,et al.  Organic Light-Emitting Diodes Based on Variously Substituted Pyrazoloquinolines as Emitting Material , 2001 .

[47]  W. Marshall,et al.  New, efficient electroluminescent materials based onorganometallic Ir complexes , 2001 .

[48]  Stephen R. Forrest,et al.  Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer , 2000 .

[49]  Stephen R. Forrest,et al.  Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation , 2000 .

[50]  W. Blau,et al.  Hole blocking in carbon nanotube–polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene) , 2000 .

[51]  Y. Tao,et al.  Blue Light-Emitting Diodes Based on Dipyrazolopyridine Derivatives , 2000 .

[52]  G. Bazan,et al.  Synthesis, Morphology, and Optical Properties of Tetrahedral Oligo(phenylenevinylene) Materials , 2000 .

[53]  S. So,et al.  A High-Efficiency Blue Emitter for Small Molecule-Based Organic Light-Emitting Diode , 2000 .

[54]  John P. Ferraris,et al.  MEH-PPV: Improved synthetic procedure and molecular weight control , 2000 .

[55]  Alex Tullo,et al.  DuPont emerges as polyester technology provider , 2000 .

[56]  F. Cotton,et al.  A New Linear Tricobalt Compound with Di(2-pyridyl)amide (dpa) Ligands: Two-Step Spin Crossover of [Co3(dpa)4Cl2][BF4] , 2000 .

[57]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[58]  Stephen R. Forrest,et al.  EXCITONIC SINGLET-TRIPLET RATIO IN A SEMICONDUCTING ORGANIC THIN FILM , 1999 .

[59]  F. Wudl,et al.  Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Ching Wan Tang,et al.  Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative , 1999 .

[61]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[62]  Y. Shirota,et al.  5,5‘-Bis(dimesitylboryl)-2,2‘-bithiophene and 5,5‘‘-Bis(dimesitylboryl)-2,2‘:5‘,2‘‘-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials , 1998 .

[63]  T. Swager,et al.  The Molecular Wire Approach to Sensory Signal Amplification , 1998 .

[64]  Jianmin Shi,et al.  Metal chelates as emitting materials for organic electroluminescence , 1998 .

[65]  Yoshiharu Sato,et al.  Characteristics of organic electroluminescent devices with new dopants , 1997 .

[66]  T. Swager,et al.  Directed Electrophilic Cyclizations: Efficient Methodology for the Synthesis of Fused Polycyclic Aromatics , 1997 .

[67]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[68]  Yang Yang,et al.  Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene , 1996 .

[69]  Scott D. Cummings,et al.  Tuning the Excited-State Properties of Platinum(II) Diimine Dithiolate Complexes , 1996 .

[70]  E. Zangrando,et al.  New atropisomeric bidentate nitrogen-donor compounds as potential stereocontrollers in mild CO–styrene copolymerisation catalysed by palladium(II) salts , 1996 .

[71]  Tadashi Kusumoto,et al.  Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant , 1995 .

[72]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[73]  M. Sinclair,et al.  Electron and hole mobility in tris(8‐hydroxyquinolinolato‐N1,O8) aluminum , 1995 .

[74]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[75]  G. Natile,et al.  Platinum amides from platinum nitriles: x-ray crystal structures of the unbridged dinuclear compounds bis[bis(1-imino-1-hydroxy-2,2-dimethylpropane)dichloroplatinum(II)] and bis[bis(1-imino-1-hydroxy-2,2-dimethylpropane)(1-amino-1-oxo-2,2-dimethylpropane)dichloroplatinum(II)] , 1993 .

[76]  P. Djurovich,et al.  A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines , 1991 .

[77]  M. Yamasaki,et al.  Sulfur-bridged incomplete cubane-type mixed-metal cluster compounds of molybdenum(IV) and tungsten(IV). Syntheses, characterization, and x-ray structures of [Mo2WS4H2O)9](CH3C6H4SO3)4.9H2O) and [MoW2S4(H2O)9](CH3C6H4SO3)4.9H2O , 1991 .

[78]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[79]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[80]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[81]  R. Thummel,et al.  Preparation of 3,2'-annulated 2-phenylpyridines and their cyclopalladation chemistry , 1987 .

[82]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[83]  M. Nonoyama Benzo[h]quinolin-10-yl-N Iridium(III) Complexes , 1974 .