Atomistic study on dopant-distributions in realistically sized, highly P-doped Si nanowires.

The dependency of dopant-distributions on channel diameters in realistically sized, highly phosphorus-doped silicon nanowires is investigated with an atomistic tight-binding approach coupled to self-consistent Schrödinger-Poisson simulations. By overcoming the limit in channel sizes and doping densities of previous studies, this work examines electronic structures and electrostatics of free-standing circular silicon nanowires that are phosphorus-doped with a high density of ∼ 2 × 10(19) cm(-3) and have 12 nm-28 nm cross-sections. Results of analysis on the channel energy indicate that the uniformly distributed dopant profile would be hardly obtained when the nanowire cross-section is smaller than 20 nm. Insufficient room to screen donor ions and shallower impurity bands are the primary reasons of the nonuniform dopant-distributions in smaller nanowires. Being firmly connected to the recent experimental study (Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254-15258), this work establishes the first theoretical framework for understanding dopant-distributions in over-10 nm highly doped silicon nanowires.

[1]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[2]  Jinlin Huang,et al.  Diameter-dependent dopant location in silicon and germanium nanowires , 2009, Proceedings of the National Academy of Sciences.

[3]  Gerhard Klimeck,et al.  Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization , 2010 .

[4]  T. Boykin,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part I: Models and Benchmarks , 2007, IEEE Transactions on Electron Devices.

[5]  X. Blase,et al.  Conductance, surface traps, and passivation in doped silicon nanowires. , 2006, Nano letters.

[6]  K. Chang,et al.  Stability and segregation of B and P dopants in Si/SiO2 core-shell nanowires. , 2012, Nano letters.

[7]  A. K. Ramdas,et al.  Linewidths of the electronic excitation spectra of donors in silicon , 1981 .

[8]  E. T. Gawlinski,et al.  Direct and exchange-correlation carrier interaction effects in a resonant tunnel diode , 1992 .

[9]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.

[10]  D. Vasileska,et al.  Feasibility, accuracy, and performance of contact block reduction method for multi-band simulations of ballistic quantum transport , 2011, 1112.3124.

[11]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[12]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[13]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[14]  Christophe Delerue,et al.  Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement , 2007 .

[15]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[16]  J. Connell,et al.  Spatially resolved correlation of active and total doping concentrations in VLS grown nanowires. , 2013, Nano letters.

[17]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[18]  Sunhee Lee,et al.  Atomistic modeling of metallic nanowires in silicon. , 2013, Nanoscale.

[19]  Gerhard Klimeck,et al.  Stark tuning of the charge states of a two-donor molecule in silicon , 2009, Nanotechnology.

[20]  Gerhard Klimeck,et al.  High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.

[21]  H. Ryu,et al.  Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers , 2011 .

[22]  Yossi Rosenwaks,et al.  Measurement of active dopant distribution and diffusion in individual silicon nanowires. , 2010, Nano letters.

[23]  Peter W Voorhees,et al.  Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires. , 2013, Nano letters.

[24]  Walter Riess,et al.  Donor deactivation in silicon nanostructures. , 2009, Nature nanotechnology.

[25]  J. Chelikowsky,et al.  Quantum confinement, core level shifts, and dopant segregation in P-doped Si⟨110⟩ nanowires , 2010 .

[26]  E Koren,et al.  Obtaining uniform dopant distributions in VLS-grown Si nanowires. , 2011, Nano letters.

[27]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .