Lunar surface roughness based on multiscale morphological method

Abstract Surface roughness is a useful tool to reflect numerous geological characteristics. Lunar Orbiter Laser Altimeter (LOLA) Gridded Data Records (GDRs) are used as the datum. In this paper, Lunar surface roughness maps are built based on morphological methods in image processing. As roughness measure, elevations of GDRs are considered as pixels of an image. Structuring element (SE) is employed as a scale-dependent measure of roughness maps. Global roughness maps with different resolutions are built to interpret the stability of our roughness measure. Global roughness with different-size SEs is mapped based on GDRs with the resolution of 64 pixels per degree to discuss the roughness variations in local regions determined by SEs. Regional roughness maps provide significant melt-related overviews of typical topography.

[1]  Stefano Mottola,et al.  European Planetary Science Congress 2006 , 2008 .

[2]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[3]  David E. Smith,et al.  Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) , 2010 .

[4]  David E. Smith,et al.  Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter , 2011 .

[5]  Vijanth S. Asirvadam,et al.  A method for computation of surface roughness of digital elevation model terrains via multiscale analysis , 2011, Comput. Geosci..

[6]  David E. Smith,et al.  Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units , 2013 .

[7]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[8]  S. Sasaki,et al.  Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE , 2008 .

[9]  Angioletta Coradini,et al.  Self‐affine behavior of Martian topography at kilometer scale from Mars Orbiter Laser Altimeter data , 2003 .

[10]  P. Soille,et al.  Automated basin delineation from digital elevation models using mathematical morphology , 1990 .

[11]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[12]  M. Robinson,et al.  Impact Melt in Small Lunar Highlands Craters , 2011 .

[13]  Vijanth S. Asirvadam,et al.  Computing surface roughness of individual cells of digital elevation models via multiscale analysis , 2012, Comput. Geosci..

[14]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[15]  Zhao Wenji,et al.  ADVANCES IN THE APPLICATION OF MATHEMATICAL MORPHOLOGY IN SPATIAL DATA PROCESSING AND ANALYSIS , 2006 .

[16]  R. Clark,et al.  Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan‐1 , 2011 .

[17]  T. Farr,et al.  The roughness of natural terrain: A planetary and remote sensing perspective , 2001 .

[18]  Mark H. Torrence,et al.  Results from the Lunar Orbiter Laser Altimeter (LOLA): Global, High Resolution Topographic Mapping of the Moon , 2011 .

[19]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[20]  P. Spudis,et al.  Geology and composition of the Orientale Basin impact melt sheet , 2014 .

[21]  G. Matheron Random Sets and Integral Geometry , 1976 .

[22]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[23]  Jc Iliffe,et al.  Datums and Map Projections: for Remote Sensing, GIS and Surveying , 1999 .

[24]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[25]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[26]  J. Oberst,et al.  Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry , 2009, Science.

[27]  M. Kreslavsky New observational evidence of strong seismic effects of basin-forming impacts on the Moon , 2010 .

[28]  Dinesh Sathyamoorthy,et al.  Extraction of Watersheds from Digital Elevation Models Using Mathematical Morphology , 2008 .

[29]  J. Head,et al.  Large mineralogically distinct impact melt feature at Copernicus crater – Evidence for retention of compositional heterogeneity , 2013 .