Heuristic algorithms for unrelated parallel machine scheduling with a common due date, release dates, and linear earliness and tardiness penalties

[1]  Jeffrey B. Sidney,et al.  Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties , 1977, Oper. Res..

[2]  S. Lakshminarayan,et al.  Technical Note - Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties , 1978, Oper. Res..

[3]  J. J. Kanet Minimizing the average deviation of job completion times about a common due date , 1981 .

[4]  Nicholas G. Hall Single- and multiple-processor models for minimizing completion time variance , 1986 .

[5]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[6]  T.C.E. Cheng,et al.  Survey of scheduling research involving due date determination decisions , 1989 .

[7]  T.C.E. Cheng,et al.  A Heuristic for Common Due-date Assignment and Job Scheduling on Parallel Machines , 1989 .

[8]  Subhash C. Sarin,et al.  Scheduling independent jobs with stochastic processing times and a common due date on parallel and identical machines , 1989 .

[9]  S. Sethi,et al.  Equivalence of Mean Flow Time Problems and Mean Absolute Deviation Problems , 1990 .

[10]  Gary D. Scudder,et al.  Sequencing with Earliness and Tardiness Penalties: A Review , 1990, Oper. Res..

[11]  Prabuddha De,et al.  Scheduling about a common due date with earliness and tardiness penalties , 1990, Comput. Oper. Res..

[12]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[13]  Suresh P. Sethi,et al.  Earliness-Tardiness Scheduling Problems, II: Deviation of Completion Times About a Restrictive Common Due Date , 1991, Oper. Res..

[14]  Marc E. Posner,et al.  Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date , 1991, Oper. Res..

[15]  Udayan Nandkeolyar,et al.  Dynamic single-machine-weighted absolute deviation problem: predictive heuristics and evaluation , 1993 .

[16]  T.C.E. Cheng,et al.  Parallel-Machine Scheduling Problems with Earliness and Tardiness Penalties , 1994 .

[17]  Han Hoogeveen,et al.  New Lower and Upper Bounds for Scheduling Around a Small Common Due Date , 1994, Oper. Res..

[18]  József Sándor,et al.  Handbook of Number Theory I , 1995 .

[19]  Chris N. Potts,et al.  A comparison of local search methods for flow shop scheduling , 1996, Ann. Oper. Res..

[20]  Zheng Zhou,et al.  A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems , 1996 .

[21]  George Z. Li Single machine earliness and tardiness scheduling , 1997 .

[22]  Bahram Alidaee,et al.  Scheduling parallel machines to minimize total weighted and unweighted tardiness , 1997, Comput. Oper. Res..

[23]  R. Heady,et al.  Minimizing the sum of job earliness and tardiness in a multimachine system , 1998 .

[24]  Costas P. Pappis,et al.  Scheduling under a common due-data on parallel unrelated machines , 1998, Eur. J. Oper. Res..

[25]  M. Azizoglu,et al.  Tardiness minimization on parallel machines , 1998 .

[26]  Frank Werner,et al.  A comparison of heuristic algorithms for flow shop scheduling problems with setup times and limited batch size , 1999 .

[27]  Funda Sivrikaya-Serifoglu,et al.  Parallel machine scheduling with earliness and tardiness penalties , 1999, Comput. Oper. Res..

[28]  Jatinder N. D. Gupta,et al.  Local search heuristics for two-stage flow shop problems with secondary criterion , 2002, Comput. Oper. Res..

[29]  Mikhail Y. Kovalyov,et al.  Approximation Schemes for Scheduling Jobs with Common Due Date on Parallel Machines to Minimize Total Tardiness , 2002, J. Heuristics.