Atomistic study on high temperature creep of nanocrystalline 316L austenitic stainless steels

[1]  Zhenlin Chen,et al.  Molecular dynamics study on micro jet in single crystal aluminum , 2022, Acta Mechanica Sinica.

[2]  Hang Yang,et al.  Localization and macroscopic instability in nanoporous metals , 2022, Acta Mechanica Sinica.

[3]  Xiazi Xiao,et al.  A general steady-state creep model incorporating dislocation static recovery for pure metallic materials , 2022, International Journal of Plasticity.

[4]  Wanlin Guo,et al.  A newly developed interatomic potential of Nb−Al−Ti ternary systems for high-temperature applications , 2022, Acta Mechanica Sinica.

[5]  Weifeng Yuan,et al.  Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration , 2021, International Journal of Mechanical Sciences.

[6]  M. Huang,et al.  In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations , 2021, Journal of Materials Research and Technology.

[7]  Xiaoyan Li,et al.  Atomistic simulations of high-temperature creep in nanotwinned TiAl alloys , 2021 .

[8]  P. Choi,et al.  Dissecting functional degradation in NiTi shape memory alloys containing amorphous regions via atomistic simulations , 2021, 2103.14319.

[9]  J. King,et al.  Molecular dynamics simulations of radiation cascade evolution near cellular dislocation structures in additively manufactured stainless steels , 2021, Journal of Nuclear Materials.

[10]  Yujie Wei,et al.  Scaling of internal dissipation of polycrystalline solids on grain-size and frequency , 2020 .

[11]  D. McDowell,et al.  Temperature and composition dependent screw dislocation mobility in austenitic stainless steels from large-scale molecular dynamics , 2020, npj Computational Materials.

[12]  A. Nematollahi,et al.  Atomistic deformation behavior of single and twin crystalline Cu nanopillars with preexisting dislocations , 2020, Acta Materialia.

[13]  K. Zhou,et al.  Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transformation ratchetting and its atomic mechanism , 2020 .

[14]  J. Moverare,et al.  Short-Term Creep Behavior of an Additive Manufactured Non-Weldable Nickel-Base Superalloy Evaluated by Slow Strain Rate Testing , 2019, Acta Materialia.

[15]  Michael E. Foster,et al.  An Fe‐Ni‐Cr embedded atom method potential for austenitic and ferritic systems , 2018, J. Comput. Chem..

[16]  Tong-Yi Zhang,et al.  Multi-temperature indentation creep tests on nanotwinned copper , 2018 .

[17]  Vasily V. Bulatov,et al.  Probing the limits of metal plasticity with molecular dynamics simulations , 2017, Nature.

[18]  K. Nikbin,et al.  Predicting failure modes in creep and creep-fatigue crack growth using a random grain/grain boundary idealised microstructure meshing system , 2017 .

[19]  Byeong-Joo Lee,et al.  Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems , 2017 .

[20]  J. Jeon,et al.  Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys , 2017 .

[21]  Tong-Yi Zhang,et al.  Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations , 2016 .

[22]  Y. Kulkarni,et al.  Molecular dynamics study of creep mechanisms in nanotwinned metals , 2015 .

[23]  C. Domain,et al.  Molecular dynamics investigation of the interaction of an edge dislocation with Frank loops in Fe-Ni 10 -Cr 20 alloy , 2015 .

[24]  S. Mathaudhu,et al.  Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys , 2015, 1506.07149.

[25]  N. Castin,et al.  Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy , 2013 .

[26]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[27]  H. Aourag,et al.  Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach , 2013 .

[28]  V. Bulatov,et al.  Automated identification and indexing of dislocations in crystal interfaces , 2012 .

[29]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[30]  S. Ogata,et al.  Transition of creep mechanism in nanocrystalline metals , 2011 .

[31]  G. Bonny,et al.  Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy , 2011 .

[32]  Huajian Gao,et al.  Dislocation nucleation governed softening and maximum strength in nano-twinned metals , 2010, Nature.

[33]  Huajian Gao,et al.  Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum , 2009, Proceedings of the National Academy of Sciences.

[34]  Y. Yamamoto,et al.  Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels , 2007, Science.

[35]  Y. Mishin,et al.  Atomic mechanisms of grain boundary diffusion: Low versus high temperatures , 2005 .

[36]  S. Phillpot,et al.  Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation , 2004 .

[37]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[38]  S. Phillpot,et al.  Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation , 2002 .

[39]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  Wei Zhang,et al.  Type IV failure in weldment of creep resistant ferritic alloys: I. Micromechanical origin of creep strain localization in the heat affected zone , 2020 .

[42]  Amit Gupta,et al.  Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures , 2016 .

[43]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[44]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.