Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices

The synthesis of interpenetrating polymer networks (IPNs) is proposed as an alternative to polyether-based (co)polymers or networks for the design of solid polymer electrolytes (SPEs). IPNs were prepared from an elastomer bringing the mechanical properties and poly(ethylene oxide). These IPNs, swollen by N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)-imide (EMITFSI), possess an ionic conductivity close to 10−3 S cm−1 at 30 °C. In order to form conducting IPNs, chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) has been carried out within the SPE IPN. A pseudo-trilayer configuration has been obtained with the SPE IPN sandwiched between two interpenetrated PEDOT electrodes. Controlling the PEDOT content from 0.3 to 24 wt% in the material, electrochromic, electroreflective, or electromechanical devices is obtained.

[1]  F. Vidal,et al.  Symmetrical electrochromic device from poly(3,4-(2,2-dimethylpropylenedioxy)thiophene)-based semi-interpenetrating polymer network , 2012 .

[2]  C. Plesse,et al.  Influence of the poly(ethylene oxide)/polybutadiene IPN morphology on the ionic conductivity of ionic liquid , 2013 .

[3]  Peter V. Wright,et al.  Electrical conductivity in ionic complexes of poly(ethylene oxide) , 1975 .

[4]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[5]  M. Paoli,et al.  An electroactive elastomer : polyaniline/nitrile rubber , 1992 .

[6]  J. Gardette,et al.  Phototransformation of water-soluble polymers. I : photo- and thermooxidation of poly(ethylene oxide) in solid state , 2001 .

[7]  G. Wallace,et al.  Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes , 2003 .

[8]  M. Depaoli,et al.  Synthesis and characterization of a composite containing poly(3-methylthiophene) and nitrilic rubber , 1992 .

[9]  Frédéric Vidal,et al.  Self-supported semi-interpenetrating polymer networks for new design of electrochromic devices , 2008 .

[10]  Giao T. M. Nguyen,et al.  Flexible Solid Polymer Electrolytes Based on Nitrile Butadiene Rubber/Poly(ethylene oxide) Interpenetrating Polymer Networks Containing Either LiTFSI or EMITFSI , 2011 .

[11]  Cédric Plesse,et al.  Actuation and Sensing properties of Electroactive Polymer Whiskers , 2011, FET.

[12]  D. Klempner,et al.  Interpenetrating Polymer Networks , 1994 .

[13]  C. Plesse,et al.  Feasibility of conducting semi‐interpenetrating networks based on a poly(ethylene oxide) network and poly(3,4‐ethylenedioxythiophene) in actuator design , 2003 .

[14]  F. Vidal,et al.  Thermal ageing of poly(ethylene oxide)/poly(3,4-ethylenedioxythiophene) semi-IPNs , 2008 .

[15]  F. Vidal,et al.  Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices , 2008 .

[16]  Toshiharu Mukai,et al.  Electroactive Polymer Actuators and Devices (EAPAD) 2011 , 2017 .

[17]  Prasanna Chandrasekhar,et al.  Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems , 1995, Optics & Photonics.

[18]  John R. Reynolds,et al.  Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays , 2004 .

[19]  C. Plesse,et al.  Long-life air working conducting semi-IPN/ionic liquid based actuator , 2004 .

[20]  G. Wallace,et al.  Fast trilayer polypyrrole bending actuators for high speed applications , 2006 .

[21]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[22]  Abderrahmane Kheddar,et al.  Synthesis and Characterization of IPNs for Electrochemical Actuators , 2008 .

[23]  P. H. Aubert,et al.  Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  R. Baughman Conducting polymer artificial muscles , 1996 .

[25]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[26]  Cédric Plesse,et al.  Synthesis and characterization of conducting interpenetrating polymer networks for new actuators , 2005 .

[27]  Frédéric Vidal,et al.  Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices , 2012 .

[28]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[29]  F. Vidal,et al.  New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture , 2010 .

[30]  E. Smela,et al.  Development of solid-in-hollow electrochemical linear actuators using highly conductive polyaniline , 2004 .

[31]  W. Takashima,et al.  Tris(trifluoromethylsulfonyl)methide-doped polypyrrole as a conducting polymer actuator with large electrochemical strain , 2006 .

[32]  Gajanana C. Birur,et al.  Conducting Polymer (CP) infrared electrochromics in spacecraft thermal control and military applications , 2003 .

[33]  N. S. Sariciftci,et al.  Infrared reflectance of polypyrrole: ‘metal’ with a gap in the spectrum of charged excitations , 1995 .

[34]  I. Hunter,et al.  Fast contracting polypyrrole actuators , 2000 .

[35]  C. Plesse,et al.  Long-Life Air Working Semi-IPN/Ionic Liquid: New Precursor of Artificial Muscles , 2006 .

[36]  Olle Inganäs,et al.  Electrochemically Induced Volume Changes in Poly(3,4-ethylenedioxythiophene) , 1996 .

[37]  P. Topart,et al.  Wide band electrochromic displays based on thin conducting polymer films , 2001 .

[38]  S. K. Deb,et al.  A novel electrophotographic system. , 1969, Applied optics.

[39]  Cédric Plesse,et al.  Robust solid polymer electrolyte for conducting IPN actuators , 2013 .

[40]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[41]  Kwanghee Lee,et al.  Reflectance of conducting poly(3,4-ethylenedioxythiophene) , 1999 .

[42]  C. Plesse,et al.  Polyethylene oxide–polytetrahydrofurane–PEDOT conducting interpenetrating polymer networks for high speed actuators , 2011 .

[43]  P. Aubert,et al.  Electroactive Polymers with Semi-IPN Architectures for Electrochromic Devices , 2010 .

[44]  A. Pron,et al.  Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) — “in situ” conductivity and spectroscopic investigations , 2000 .

[45]  Cédric Plesse,et al.  Electro-active Interpenetrating Polymer Networks actuators and strain sensors: Fabrication, position control and sensing properties , 2014 .

[46]  Mats Andersson,et al.  TUNING THE BANDGAP FOR POLYMERIC SMART WINDOWS AND DISPLAYS , 1995 .

[47]  J. Heinze,et al.  Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes , 1994 .

[48]  C. Plesse,et al.  Poly(ethylene oxide)/polybutadiene based IPNs synthesis and characterization , 2007 .

[49]  C. R. Martin,et al.  Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole , 1992 .

[50]  Rudolf Kiefer,et al.  Cation driven actuation for free standing PEDOT films prepared from propylene carbonate electrolytes containing TBACF3SO3 , 2008 .

[51]  Claude Chevrot,et al.  Actuator based on poly(3,4-ethylenedioxythiophene)/PEO/elastomer IPNs , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[52]  Y. Ikeda,et al.  Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s , 2002 .

[53]  A. De,et al.  An electrochemically synthesized conducting semi-IPN from polypyrrole and poly(vinyl alcohol) , 2002 .

[54]  C. Vincent,et al.  Polymer electrolyte reviews. 1 , 1987 .

[55]  E. Smela Microfabrication of PPy microactuators and other conjugated polymer devices , 1999 .

[56]  A. L. Dyer,et al.  A Poly(3,4‐alkylenedioxythiophene) Electrochromic Variable Optical Attenuator with Near‐Infrared Reflectivity Tuned Independently of the Visible Region , 2007 .

[57]  F. Jonas,et al.  Poly(alkylenedioxythiophene)s—new, very stable conducting polymers , 1992 .

[58]  H. Ohno,et al.  Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives , 2005 .

[59]  K. Asaka,et al.  Actuator properties of the complexes composed by carbon nanotube and ionic liquid: The effects of additives , 2009 .

[60]  Cédric Plesse,et al.  Conducting interpenetrating polymer network sized to fabricate microactuators , 2011 .

[61]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[62]  J. Arias-Pardilla,et al.  Self-supported semi-interpenetrating polymer networks as reactive ambient sensors , 2011 .

[63]  Dominique Teyssié,et al.  Conducting polymer artificial muscle fibres: toward an open air linear actuation. , 2010, Chemical communications.

[64]  A. MacDiarmid,et al.  Artificial muscle: electromechanical actuators using polyaniline films , 1994 .

[65]  Cédric Plesse,et al.  Conducting IPN actuators for biomimetic vision system , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[66]  A. Kheddar,et al.  Poly(3,4‐ethylenedioxythiophene)‐containing semi‐interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices , 2010 .

[67]  Hiroyuki Ohno,et al.  Improved ionic conductivity of nitrile rubber/ionic liquid composites , 2005 .

[68]  F. Vidal,et al.  Feasibility of conducting semi-IPN with variable electro-emissivity: A promising way for spacecraft thermal control , 2012 .

[69]  Alvo Aabloo,et al.  Combined chemical and electrochemical synthesis methods for metal-free polypyrrole actuators , 2012 .

[70]  S. Holdcroft Patterning π‐Conjugated Polymers , 2001 .

[71]  C. Plesse,et al.  Polybutadiene/poly(ethylene oxide) based IPNs, Part II: Mechanical modelling and LiClO4 loading as tools for IPN morphology investigation , 2007 .

[72]  Abderrahmane Kheddar,et al.  Conducting IPN actuators: From polymer chemistry to actuator with linear actuation , 2006 .

[73]  C. Plesse,et al.  PEDOT Based Conducting IPN Actuators: Effects of Electrolyte on Actuation , 2012 .

[74]  Cédric Plesse,et al.  Patterning process and actuation in open air of micro-beam actuator based on conducting IPNs , 2012, Smart Structures.